Speech Perception and Auditory Temporal Processing Performance by Older Listeners: Implications for Real-World Communication

2006 ◽  
Vol 27 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Sandra Gordon-Salant
2021 ◽  
Author(s):  
Nehzat Koohi ◽  
Gilbert Thomas-Black ◽  
Paola Giunti ◽  
Doris-Eva Bamiou

AbstractAuditory neural impairment is a key clinical feature of Friedreich’s Ataxia (FRDA). We aimed to characterize the phenotypical spectrum of the auditory impairment in FRDA in order to facilitate early identification and timely management of auditory impairment in FRDA patients and to explore the relationship between the severity of auditory impairment with genetic variables (the expansion size of GAA trinucleotide repeats, GAA1 and GAA2), when controlled for variables such as disease duration, severity of the disease and cognitive status. Twenty-seven patients with genetically confirmed FRDA underwent baseline audiological assessment (pure-tone audiometry, otoacoustic emissions, auditory brainstem response). Twenty of these patients had additional psychophysical auditory processing evaluation including an auditory temporal processing test (gaps in noise test) and a binaural speech perception test that assesses spatial processing (Listening in Spatialized Noise-Sentences Test). Auditory spatial and auditory temporal processing ability were significantly associated with the repeat length of GAA1. Patients with GAA1 greater than 500 repeats had more severe auditory temporal and spatial processing deficits, leading to poorer speech perception. Furthermore, the spatial processing ability was strongly correlated with the Montreal Cognitive Assessment (MoCA) score. To our knowledge, this is the first study to demonstrate an association between genotype and auditory spatial processing phenotype in patients with FRDA. Auditory temporal processing, neural sound conduction, spatial processing and speech perception were more severely affected in patients with GAA1 greater than 500 repeats. The results of our study may indicate that auditory deprivation plays a role in the development of mild cognitive impairment in FRDA patients.


1995 ◽  
Vol 18 (1) ◽  
pp. 189-189 ◽  
Author(s):  
Roslyn Holly Fitch ◽  
Paula Tallal

AbstractWilkins & Wakefield suggest that changes in the hominid brain made it uniquely “preadaptive” for language, yet no precursor functions served as adaptive substrates to the emergence of language. We present contrary evidence that the ability to discriminate and process rapid and complex auditory information is a cross-species function subserving communication processes including, but not limited to, human speech perception. We suggest that auditory temporal processing served as an evolutionary precursor to speech processing and consequent language development in humans.


2021 ◽  
Author(s):  
Shauni Van Herck ◽  
Femke Vanden Bempt ◽  
Maria Economou ◽  
Jolijn Vanderauwera ◽  
Toivo Glatz ◽  
...  

Dyslexia has frequently been related to atypical auditory temporal processing and speech perception. Results of studies emphasizing speech onset cues and reinforcing the temporal structure of the speech envelope, i.e. envelope enhancement, demonstrated reduced speech perception deficits in individuals with dyslexia. The use of this strategy as an auditory intervention might thus reduce some of the deficits related to dyslexia. Importantly, interventions are most effective when they are provided during kindergarten and first grade. Hence, we provided a tablet-based 12-week preventive auditory and phonics-based intervention to pre-readers at cognitive risk for dyslexia and investigated the effect on auditory temporal processing with a rise time discrimination task. Ninety-one pre-readers at cognitive risk for dyslexia (aged 5-6) were assigned to two groups receiving a phonics-based intervention and playing a story listening game either with (n = 31) or without (n = 31) envelope enhancement or a third group playing control games and listening to non-enhanced stories (n = 29). Rise time discrimination was measured directly before, directly after and one year after the intervention. While the groups listening to non-enhanced stories mainly improved after the intervention during first grade, the group listening to enhanced stories improved during the intervention in kindergarten and subsequently remained stable during first grade. Hence, an envelope enhancement intervention improves auditory processing skills important for the development of phonological skills. This occurred before the onset of reading instruction, preceding the maturational improvement of these skills, hence giving at risk children a head start when learning to read.


2020 ◽  
Vol 63 (4) ◽  
pp. 1270-1281
Author(s):  
Leah Fostick ◽  
Riki Taitelbaum-Swead ◽  
Shulamith Kreitler ◽  
Shelly Zokraut ◽  
Miriam Billig

Purpose Difficulty in understanding spoken speech is a common complaint among aging adults, even when hearing impairment is absent. Correlational studies point to a relationship between age, auditory temporal processing (ATP), and speech perception but cannot demonstrate causality unlike training studies. In the current study, we test (a) the causal relationship between a spatial–temporal ATP task (temporal order judgment [TOJ]) and speech perception among aging adults using a training design and (b) whether improvement in aging adult speech perception is accompanied by improved self-efficacy. Method Eighty-two participants aged 60–83 years were randomly assigned to a group receiving (a) ATP training (TOJ) over 14 days, (b) non-ATP training (intensity discrimination) over 14 days, or (c) no training. Results The data showed that TOJ training elicited improvement in all speech perception tests, which was accompanied by increased self-efficacy. Neither improvement in speech perception nor self-efficacy was evident following non-ATP training or no training. Conclusions There was no generalization of the improvement resulting from TOJ training to intensity discrimination or generalization of improvement resulting from intensity discrimination training to speech perception. These findings imply that the effect of TOJ training on speech perception is specific and such improvement is not simply the product of generally improved auditory perception. It provides support for the idea that temporal properties of speech are indeed crucial for speech perception. Clinically, the findings suggest that aging adults can be trained to improve their speech perception, specifically through computer-based auditory training, and this may improve perceived self-efficacy.


1994 ◽  
Vol 4 (3) ◽  
pp. 260-270 ◽  
Author(s):  
R. H. Fitch ◽  
P. Tallal ◽  
C. P. Brown ◽  
A. M. Galaburda ◽  
G. D. Rosen

2013 ◽  
Vol 109 (12) ◽  
pp. 2866-2882 ◽  
Author(s):  
Yamini Venkataraman ◽  
Edward L Bartlett

The development of auditory temporal processing is important for processing complex sounds as well as for acquiring reading and language skills. Neuronal properties and sound processing change dramatically in auditory cortex neurons after the onset of hearing. However, the development of the auditory thalamus or medial geniculate body (MGB) has not been well studied over this critical time window. Since synaptic inhibition has been shown to be crucial for auditory temporal processing, this study examined the development of a feedforward, GABAergic connection to the MGB from the inferior colliculus (IC), which is also the source of sensory glutamatergic inputs to the MGB. IC-MGB inhibition was studied using whole cell patch-clamp recordings from rat brain slices in current-clamp and voltage-clamp modes at three age groups: a prehearing group [ postnatal day (P)7–P9], an immediate posthearing group (P15–P17), and a juvenile group (P22–P32) whose neuronal properties are largely mature. Membrane properties matured substantially across the ages studied. GABAA and GABAB inhibitory postsynaptic potentials were present at all ages and were similar in amplitude. Inhibitory postsynaptic potentials became faster to single shocks, showed less depression to train stimuli at 5 and 10 Hz, and were overall more efficacious in controlling excitability with age. Overall, IC-MGB inhibition becomes faster and more precise during a time period of rapid changes across the auditory system due to the codevelopment of membrane properties and synaptic properties.


Sign in / Sign up

Export Citation Format

Share Document