CTG-Monitoring Networks in a labor ward – are they safe?

Author(s):  
HJ Grimminger ◽  
HG Lenhard ◽  
W Wiest
Author(s):  
Sima Ajdar qizi Askerova

Monitoring of sea water condition is one of major requirements for carrying out the reliable ecological control of water environment. Monitoring networks contain such elements as sea buoys, beacons, etc. and are designated for measuringvarious hydrophysical parameters, including salinity of sea water. Development of specialized network and a separate buoy system for measuring thesea water salinity at different depths makes it possible to determine major regularities of processes of pollution and self-recovery of the sea waters. The article describes the scientific and methodological basics for development of this specialized network and questions of its optimal construction. It is well-known that at a depth of 30-45 m of the Caspian Sea salinity decreases and then at a depth of 45-60 m salinity is fully recovered. The mentioned changes of salinity at the relatively upper layer of sea waters is of special interest for studying the effect of ocean-going processes on the climate forming in the Caspian area. In terms of informativeness of measurements of surface waters salinity, the most informative is a layer ata 30-60 m depth, where inversion and recovery of salinity take place. It is shown that in most informative subrange of measurements, i. e. at a depth of 30-60 m optimization of regime of measurements complex should be carried out in order to increase the effectiveness of held researches. It is shown that at a depth of 35-50 m choice of the optimum regime of measurements makes it possible to obtain the maximum amount of information.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 721-727 ◽  
Author(s):  
J. Pintér ◽  
L. Somlyódy

A conceptual framework is presented for optimizing the operation of regional monitoring networks which assist water quality management. The primary objective of the studied network is to determine the annual nutrient load carried into a lake by its tributaries. Following the description of the basic (single time–period, single water quality indicator) model, several extension possibilities and computational aspects are highlighted. The suggested methodology is illustrated by a numerical example, concerning the surveillance system on the tributaries of Lake Balaton (Hungary).


2020 ◽  
Vol 12 (24) ◽  
pp. 4183
Author(s):  
Emmanouil Andreadakis ◽  
Michalis Diakakis ◽  
Emmanuel Vassilakis ◽  
Georgios Deligiannakis ◽  
Antonis Antoniadis ◽  
...  

The spatial and temporal scale of flash flood occurrence provides limited opportunities for observations and measurements using conventional monitoring networks, turning the focus to event-based, post-disaster studies. Post-flood surveys exploit field evidence to make indirect discharge estimations, aiming to improve our understanding of hydrological response dynamics under extreme meteorological forcing. However, discharge estimations are associated with demanding fieldwork aiming to record in small timeframes delicate data and data prone-to-be-lost and achieve the desired accuracy in measurements to minimize various uncertainties of the process. In this work, we explore the potential of unmanned aerial systems (UAS) technology, in combination with the Structure for Motion (SfM) and optical granulometry techniques in peak discharge estimations. We compare the results of the UAS-aided discharge estimations to estimates derived from differential Global Navigation Satellite System (d-GNSS) surveys and hydrologic modelling. The application in the catchment of the Soures torrent in Greece, after a catastrophic flood, shows that the UAS-aided method determined peak discharge with accuracy, providing very similar values compared to the ones estimated by the established traditional approach. The technique proved to be particularly effective, providing flexibility in terms of resources and timing, although there are certain limitations to its applicability, related mostly to the optical granulometry as well as the condition of the channel. The application highlighted important advantages and certain weaknesses of these emerging tools in indirect discharge estimations, which we discuss in detail.


Proceedings ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 26
Author(s):  
Pranjal Sharma ◽  
Ankit Agarwal ◽  
Bhawna Chaudhary

In recent years, geologists have put in a lot of effort trying to study the evolution of Earth using different techniques studying rocks, gases, and water at different channels like mantle, lithosphere, and atmosphere. Some of the methods include estimation of heat flux between the atmosphere and sea ice, modeling global temperature changes, and groundwater monitoring networks. That being said, algorithms involving the study of Earth’s evolution have been a debated topic for decades. In addition, there is distinct research on the mantle, lithosphere, and atmosphere using isotopic fractionation, which this paper will take into consideration to form genes at the former stage. This factor of isotopic fractionation could be molded in QGA to study the Earth’s evolution. We combined these factors because the gases containing these isotopes move from mantle to lithosphere or atmosphere through gaps or volcanic eruptions contributing to it. We are likely to use the Rb/Sr and Sm/Nd ratios to study the evolution of these channels. This paper, in general, provides the idea of gathering some information about temperature changes by using isotopic ratios as chromosomes, in QGA the chromosomes depict the characteristic of a generation. Here these ratios depict the temperature characteristic and other steps of QGA would be molded to study these ratios in the form of temperature changes, which would further signify the evolution of Earth based on the study that temperature changes with the change in isotopic ratios. This paper will collect these distinct studies and embed them into an upgraded quantum genetic algorithm called Quantum Genetic Terrain Algorithm or Quantum GTA.


Sign in / Sign up

Export Citation Format

Share Document