Reaction of Magnesium Metal with 2-Chlorobutane

2011 ◽  
pp. 1
Author(s):  
L. Yang ◽  
C. -J. Li
Keyword(s):  
2021 ◽  
Vol 125 (7) ◽  
pp. 1424-1435
Author(s):  
Sunila Bakhsh ◽  
Xiaohui Liu ◽  
Yanyong Wang ◽  
Lixin He ◽  
Xinguo Ren

2021 ◽  
Vol 896 ◽  
pp. 115301
Author(s):  
Xin-Cheng Hu ◽  
Shuang-Yan Lang ◽  
Yang Shi ◽  
Rui Wen ◽  
Li-Jun Wan

CrystEngComm ◽  
2013 ◽  
Vol 15 (45) ◽  
pp. 9688 ◽  
Author(s):  
Yangyang Liu ◽  
Ying-Pin Chen ◽  
Tian-Fu Liu ◽  
Andrey A. Yakovenko ◽  
Aaron M. Raiff ◽  
...  

Author(s):  
Nishita Anandan ◽  
M. Ramulu

Abstract An analytical approach to predict the cutting forces in end milling of magnesium metal matrix composite is presented in this study. The model was developed by identifying three events that occur when the cutting edge encounters the composite, when an element of the cutting edge encounters just the particles, it may fracture the particle, when the element encounters pure ductile matrix, plastic deformation occurs and when the element is in contact with both the particle and matrix, particle debonding occurs due to mismatch in coefficient of thermal expansion. The probability of these events was estimated using the particle concentration and the distribution in the matrix. A cutting force model is developed by considering the stresses and forces experienced by the cutting edge contributed by these events. The predicted feed forces and the measured forces are in good agreement for most of the cutting conditions. While, the predictive thrust forces were found to diverge at higher feed of 1 mm/rev.


2022 ◽  
Vol 1048 ◽  
pp. 3-8
Author(s):  
J. Allen Jeffrey ◽  
S. Suresh Kumar ◽  
V. Anusha Roseline ◽  
A. Lazar Mary ◽  
D. Santhosh

In modern engineering low-density composites plays a vital role of which magnesium alloys are very effective due to its high strength with better corrosion resistance and neat cast ability. In this work a micron sized Boron carbide ceramic (B4C) of about 100 microns is diffused as a reinforcement with AZ91 for preparing a magnesium metal matrix composite (MMMC) through stir casting route. A modified pit furnace setup is used for doing stir casting with varying volume fractions of 0% and 3% of boron carbide for doing the composites. Furthermore mechanical and metallurgical properties like Tensile test is made through universal testing machine, Micro-hardness through Vickers hardness tester and Micro structure through Optical Microscopy is done for investigation.


2020 ◽  
Vol 17 (1) ◽  
pp. 76-91 ◽  
Author(s):  
Yangmei Chen ◽  
Xugang Lu ◽  
Fenghua Zhao ◽  
Yi Hu ◽  
Shibing Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document