Development of Analytical Force Model for End Milling of Magnesium Matrix Composites

Author(s):  
Nishita Anandan ◽  
M. Ramulu

Abstract An analytical approach to predict the cutting forces in end milling of magnesium metal matrix composite is presented in this study. The model was developed by identifying three events that occur when the cutting edge encounters the composite, when an element of the cutting edge encounters just the particles, it may fracture the particle, when the element encounters pure ductile matrix, plastic deformation occurs and when the element is in contact with both the particle and matrix, particle debonding occurs due to mismatch in coefficient of thermal expansion. The probability of these events was estimated using the particle concentration and the distribution in the matrix. A cutting force model is developed by considering the stresses and forces experienced by the cutting edge contributed by these events. The predicted feed forces and the measured forces are in good agreement for most of the cutting conditions. While, the predictive thrust forces were found to diverge at higher feed of 1 mm/rev.

Author(s):  
Warren J. Moberly ◽  
Daniel B. Miracle ◽  
S. Krishnamurthy

Titanium-aluminum alloy metal matrix composites (MMC) and Ti-Al intermetallic matrix composites (IMC), reinforced with continuous SCS6 SiC fibers are leading candidates for high temperature aerospace applications such as the National Aerospace Plane (NASP). The nature of deformation at fiber / matrix interfaces is characterized in this ongoing research. One major concern is the mismatch in coefficient of thermal expansion (CTE) between the Ti-based matrix and the SiC fiber. This can lead to thermal stresses upon cooling down from the temperature incurred during hot isostatic pressing (HIP), which are sufficient to cause yielding in the matrix, and/or lead to fatigue from the thermal cycling that will be incurred during application, A second concern is the load transfer, from fiber to matrix, that is required if/when fiber fracture occurs. In both cases the stresses in the matrix are most severe at the interlace.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Liqing Sun ◽  
Shuai Sun ◽  
Haiping Zhou ◽  
Hongbin Zhang ◽  
Gang Wang ◽  
...  

In this work, vanadium particles (VP) were utilized as a novel reinforcement of AZ31 magnesium (Mg) alloy. The nanocrystalline (NC) AZ31–VP composites were prepared via mechanical milling (MM) and vacuum hot-press sintering. During the milling process, the presence of VP contributed to the cold welding and fracture mechanism, resulting in the acceleration of the milling process. Additionally, increasing the VP content accelerated the grain refinement of the matrix during the milling process. After milling for 90 h, the average grain size of AZ31-X wt % Vp (X = 5, 7.5, 10) was refined to only about 23 nm, 19 nm and 16 nm, respectively. In the meantime, VP was refined to sub-micron scale and distributed uniformly in the matrix, exhibiting excellent interfacial bonding with the matrix. After the sintering process, the average grain size of AZ31-X wt % VP (X = 5, 7.5, 10) composites still remained at the NC scale, which was mainly caused by the pinning effect of VP. Besides that, the porosity of the sintered composites was no more than 7.8%, indicating a good densification effect. As a result, there was little difference between the theoretical and real density. Compared to as-cast AZ31 Mg alloy, the microhardness of sintered AZ31-X wt % VP (X = 5, 7.5, 10) composites increased by 65%, 87% and 96%, respectively, owing to the strengthening mechanisms of grain refinement strengthening, Orowan strengthening and load-bearing effects.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ding Hualun

This paper chooses magnesium as the matrix of composite materials, selects carbon fi ber as reinforcement, anddesigns the composite scheme according to the structure and performance of Mg-based composites. The performancecharacteristics and application prospect of fiber-reinforced magnesium matrix composites are introduced. Wait. Inthis paper, the process of preparing carbon fi ber magnesium matrix composites by compression casting method andspray deposition method is designed. The process fl ow chart of these two design schemes is determined by analyzingthe principle of these two kinds of preparation methods, and the specifi c problems of the process are analyzed andsummarized.


2018 ◽  
Author(s):  
Isamu Nishida ◽  
Takaya Nakamura ◽  
Ryuta Sato ◽  
Keiichi Shirase

A new method, which accurately predicts cutting force in ball end milling considering cutting edge around center web, has been proposed. The new method accurately calculates the uncut chip thickness, which is required to estimate the cutting force by the instantaneous rigid force model. In the instantaneous rigid force model, the uncut chip thickness is generally calculated on the cutting edge in each minute disk element piled up along the tool axis. However, the orientation of tool cutting edge of ball end mill is different from that of square end mill. Therefore, for the ball end mill, the uncut chip thickness cannot be calculated accurately in the minute disk element, especially around the center web. Then, this study proposes a method to calculate the uncut chip thickness along the vector connecting the center of the ball and the cutting edge. The proposed method can reduce the estimation error of the uncut chip thickness especially around the center web compared with the previous method. Our study also realizes to calculate the uncut chip thickness discretely by using voxel model and detecting the removal voxels in each minute tool rotation angle, in which the relative relationship between a cutting edge and a workpiece, which changes dynamically during tool rotation. A cutting experiment with the ball end mill was conducted in order to validate the proposed method. The results showed that the error between the measured and predicted cutting forces can be reduced by the proposed method compared with the previous method.


2011 ◽  
Vol 188 ◽  
pp. 404-409 ◽  
Author(s):  
Xue Yan ◽  
Hua Tao ◽  
D.H. Zhang ◽  
B.H. Wu

A developed method to predict the cutting forces in end milling of generalized corners is proposed in this paper. The cornering milling process is divided into a series of cutting segments with different cutting states. The mathematical model of the geometric relationship between cutter and the corner profile is established for each segment. Cutting forces is predicted by introducing the classical cutting force model. The computational results of cutting forces are in good agreement with experimental data.


2007 ◽  
Vol 546-549 ◽  
pp. 499-502
Author(s):  
X. Qiu ◽  
Xiao Jun Wang ◽  
Ming Yi Zheng ◽  
Kun Wu

The fabrication processing, mechanical properties and fracture characters of SiCp/AZ91 magnesium matrix composites fabricated by squeeze casting were investigated. The SiC particles with different diameters (5μm, 20μm and 50μm) were employed as the reinforcement in the composites, the volume fraction of them was 50% in all cases. Experimental results showed that when the size of SiC particle decreased, the tensile properties of the composite increased. The tensile properties of SiCp/AZ91 composite with small particles are controlled by the properties of matrix alloy and the strength of the interface between the matrix and reinforcements, but the composites reinforced by large particles are controlled by the fracture of the particles.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5182
Author(s):  
Katarzyna N. Braszczyńska-Malik

In this paper, a summary of investigations of the microstructure of cast magnesium matrix composites is presented. Analyses of the interfaces between the reinforcing particles and the magnesium alloy matrices were performed. Technically pure magnesium and four various alloys with aluminum and rare earth elements (RE) were chosen as the matrix. The composites were reinforced with SiC and Ti particles, as well as hollow aluminosilicate cenospheres. Microstructure analyses were carried out by light, scanning, and transmission electron microscopy. The composites with the matrix of magnesium and magnesium–aluminum alloys with SiC and Ti particles exhibited coherent interfaces between the components. In the composites based on ternary magnesium alloy with Al and RE with Ti particles, a high-melting Al2RE phase nucleated on the titanium. Different types of interfaces between the components were observed in the composites based on the magnesium–rare earth elements alloy with SiC particles, in which a chemical reaction between the components caused formation of the Re3Si2 phase. Intensive chemical reactions between the components were also observed in the composites with aluminosilicate cenospheres. Additionally, the influence of coatings created on the aluminosilicate cenospheres on the bond with the magnesium matrix was presented. A scheme of the types of interfaces between the components is proposed.


2019 ◽  
Vol 70 (8) ◽  
pp. 2903-2907
Author(s):  
Ruxandra Elena Dumitrescu ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Mariana Ciurdas ◽  
Daniela Alina Necsulescu ◽  
...  

Two magnesium matrix composites reinforced with 3 and 10% Ni-Ti particulates, respectively, were obtained by plasma sintering. The reinforcement material was obtained by grinding a mixture of powders of 68% Ni and 32% Ti atomic percent in a high energy mill for 40 hours. Particulates resulting from mechanical alloying have a partially amorphous and partially nanocrystalline structure, consisting of the following phases: Ni solid solution, Ti2Ni and NiTi (B2) phase. After sintering, both the matrix and the reinforcement material are nanocrystalline and the particulates have a polyphase structure, consisting of Ni(Ti), NiTi (R phase) and Ni4Ti3. The hardness of these composites is superior to the hardness of magnesium matrix composites reinforced with Ni-Ti particulates having 50% Ni / 50% Ti and 32% Ni / 68% Ti chemical compositions obtained under the same conditions and corresponding proportions of reinforcement material.


Author(s):  
Yun Chen ◽  
Huaizhong Li ◽  
Jun Wang

A cutting force model, based on a predictive model for orthogonal cutting, is developed for force predictions in end milling of titanium alloy Ti6Al4V. The model assumes a semi-stationary process for the serrated chip formation. The Johnson–Cook material model that couples strain hardening, strain rate sensitivity and thermal softening effects is applied to represent the material strength. A thermal model considering the tool thermal properties is integrated to account for the high temperature rise due to the low thermal conductivity of Ti6Al4V. To extend the predictive model to milling, the end mill is discretised into several axial slices, and an equivalent cutting edge is used to include the end cutting edge effect caused by the first axial slice. The model is assessed by comparing its prediction with the experimental results and a mechanistic model for verification. The results show that the proposed model outperforms the mechanistic model with higher accuracy in force prediction.


Sign in / Sign up

Export Citation Format

Share Document