scholarly journals Pricing and demand management of air tickets using a multiplicative newsvendor model

Author(s):  
Doraid Dalalah ◽  
Mohammad Khasawneh ◽  
Sharafuddin Khan
2004 ◽  
Vol 4 (3) ◽  
pp. 25-32
Author(s):  
J.S. Buckle

This paper describes the introduction of water demand management in the southern African context. Originally a response to drought conditions, water demand management is now a key element in Rand Water's strategy of water cycle management - a mix of interventions that (holistically and continuously) keep the water industry viable and sustainable. This experience points to awareness and community education programmes being an essential companion to the technical interventions such as leakage reduction measures.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 135-141 ◽  
Author(s):  
Z. Pilipovic ◽  
R. Taylor

In 1996, as part of Waitakere Council’s Water Cycle Strategy, a pressure standardisation programme to permanently lower the average supply pressure citywide was implemented with the aim of reducing water loss and water use. The experience gained during the 1994/95 Auckland water shortage had confirmed that there was considerable scope to reduce pressures in many areas. Since 1996 water pressures have been reduced in over 60% of the reticulated area of the city, with the average pressure reduced from 710 kPa to 540 kPa. As a result of this programme water loss from the network has been reduced, there has been a reduction in the frequency of mains breaks and it is likely that the life of water pipeline assets has been extended. Furthermore both pressure and demand management initiatives have reduced per capita water use in the city by more than 10%. A network computer model was used as a design tool to check the network under various pressure regimes and cost benefit analyses were carried out for various design scenarios. Fire sprinkler systems were checked as part of the design process. Minimum service standards were not reduced and in some cases pressures were actually increased. This paper covers the various aspects of the design, the implementation and the results of the pressure standardisation programme.


2005 ◽  
Vol 5 (3-4) ◽  
pp. 295-301
Author(s):  
J.S. Buckle

This article describes a successful awareness and education project undertaken in an East Rand township by the Water Cycle Management Section of Rand Water. The Project's focus was to create awareness in the community of the broad concept of water cycle management within an environment and to transfer skills to community members (facilitators) who could then assist in ensuring effective and efficient water use.


2007 ◽  
Vol 7 (5-6) ◽  
pp. 53-60
Author(s):  
D. Inman ◽  
D. Simidchiev ◽  
P. Jeffrey

This paper examines the use of influence diagrams (IDs) in water demand management (WDM) strategy planning with the specific objective of exploring how IDs can be used in developing computer-based decision support tools (DSTs) to complement and support existing WDM decision processes. We report the results of an expert consultation carried out in collaboration with water industry specialists in Sofia, Bulgaria. The elicited information is presented as influence diagrams and the discussion looks at their usefulness in WDM strategy design and the specification of suitable modelling techniques. The paper concludes that IDs themselves are useful in developing model structures for use in evidence-based reasoning models such as Bayesian Networks, and this is in keeping with the objectives set out in the introduction of integrating DSTs into existing decision processes. The paper will be of interest to modellers, decision-makers and scientists involved in designing tools to support resource conservation strategy implementation.


2021 ◽  
Vol 13 (12) ◽  
pp. 6777
Author(s):  
Masanobu Kii ◽  
Yuki Goda ◽  
Varameth Vichiensan ◽  
Hiroyuki Miyazaki ◽  
Rolf Moeckel

Reducing congestion has been one of the critical targets of transportation policies, particularly in cities in developing countries suffering severe and chronic traffic congestions. Several traditional measures have been in place but seem not very successful. This paper applies the agent-based transportation model MATSim for a transportation analysis in Bangkok to assess the impact of spatiotemporal transportation demand management measures. We collect required data for the simulation from various data sources and apply maximum likelihood estimation with the limited data available. We investigate two demand management scenarios, peak time shift, and decentralization. As a result, we found that these spatiotemporal peak shift measures are effective for road transport to alleviate congestion and reduce travel time. However, the effect of those measures on public transport is not uniform but depends on the users’ circumstances. On average, the simulated results indicate that those measures increase the average travel time and distance. These results suggest that demand management policies require considerations of more detailed conditions to improve usability. The study also confirms that microsimulation can be a tool for transport demand management assessment in developing countries.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1158
Author(s):  
Yanting Zheng ◽  
Huidan Yang ◽  
Jinyuan Huang ◽  
Linjuan Wang ◽  
Aifeng Lv

The overexploitation of groundwater in China has raised concern, as it has caused a series of environmental and ecological problems. However, far too little attention has been paid to the relationship between groundwater use and the spatial distribution of water users, especially that of manufacturing factories. In this study, a factory scatter index (FSI) was constructed to represent the spatial dispersion degree of manufacturing factories in China. It was found that counties and border areas between neighboring provinces registered the highest FSI increases. Further non-spatial and spatial regression models using 205 provincial-level secondary river basins in China from 2016 showed that the scattered distribution of manufacturing plants played a key role in groundwater withdrawal in China, especially in areas with a fragile ecological environment. The scattered distribution of manufacturing plants raises the cost of tap water transmission, makes monitoring and supervision more difficult, and increases the possibility of surface water pollution, thereby intensifying groundwater withdrawal. A reasonable spatial adjustment of manufacturing industry through planning and management can reduce groundwater withdrawal and realize the protection of groundwater. Our study may provide a basis for water-demand management through spatial adjustment in areas with high water scarcity and a fragile ecological environment.


Sign in / Sign up

Export Citation Format

Share Document