U.S. Drinking-Water Regulations: Treatment Technologies and Cost

1995 ◽  
Vol 121 (9) ◽  
pp. 678-679
Author(s):  
A. Kapoor ◽  
T. Viraraghavan
Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1094
Author(s):  
Emily S. Bailey ◽  
Nikki Beetsch ◽  
Douglas A. Wait ◽  
Hemali H. Oza ◽  
Nirmala Ronnie ◽  
...  

It is estimated that 780 million people do not have access to improved drinking water sources and approximately 2 billion people use fecally contaminated drinking water. Effective point-of-use water treatment systems (POU) can provide water with sufficiently reduced concentrations of pathogenic enteric microorganisms to not pose significant health risks to consumers. Household water treatment (HWT) systems utilize various technologies that physically remove and/or inactivate pathogens. A limited number of governmental and other institutional entities have developed testing protocols to evaluate the performance of POU water treatment systems. Such testing protocols are essential to documenting effective performance because inferior and ineffective POU treatment technologies are thought to be in widespread use. This critical review examines specific practices, procedures and specification of widely available POU system evaluation protocols. Testing protocols should provide standardized and detailed instructions yet be sufficiently flexible to deal with different treatment technologies, test microbe priorities and choices, testing facility capabilities and public health needs. Appropriate infectivity or culture assays should be used to quantify test enteric bacteria, viruses and protozoan parasites, or other appropriate surrogates or substitutes for them, although processes based on physical removal can be tested by methods that detect microbes as particles. Recommendations include further research of stock microbe production and handling methods to consistently yield test microbes in a realistic state of aggregation and, in the case of bacteria, appropriately physiologically stressed. Bacterial quantification methods should address the phenomenon of bacterial injury and repair in order to maximally recover those that are culturable and potentially infectious. It is only with harmonized national and international testing protocols and performance targets that independent and unbiased testing can be done to assure consumers that POU treatment technologies are able to produce water of high microbial quality and low health risk.


2013 ◽  
Vol 47 (9) ◽  
pp. 4644-4652 ◽  
Author(s):  
Jong Kwon Choe ◽  
Michelle H. Mehnert ◽  
Jeremy S. Guest ◽  
Timothy J. Strathmann ◽  
Charles J. Werth

Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Anastasios Zouboulis ◽  
Ioannis Katsoyiannis

The present Special Issue brought together recent research findings from renowned scientists in this field and assembled contributions on advanced technologies that have been applied to the treatment of wastewater and drinking water, with an emphasis on novel membrane treatment technologies. The 12 research contributions highlight various processes and technologies that can achieve the effective treatment and purification of wastewater and drinking water, aiming (occasionally) for water reuse. The published papers can be classified into three major categories. (a) First, there are those that investigate the application of membrane treatment processes, either directly or in hybrid processes. The role of organic matter presence and fouling control is the main aim of the research in some of these studies. (b) Second, there are studies that investigate the application of adsorptive processes for the removal of contaminants from waters, such as arsenic, antimony, or chromate, with the aim of the efficient removal of the toxic contaminants from water or wastewater. (c) Lastly, there are studies that include novel aspects of oxidative treatment such as bubbleless ozonation.


2014 ◽  
Vol 5 (2) ◽  
pp. 259-284 ◽  
Author(s):  
Cynthia Morgan ◽  
Nathalie B. Simon

Abstract:This paper compares EPA’s ex ante cost analysis of the 2001 maximum contaminant limit (MCL) for Arsenic in Drinking Water to an ex post assessment of the costs. Because comprehensive cost information for installed treatment technologies or other mitigation strategies pursued by water systems to meet the new standard is not available, this case study relies upon ex post cost data from EPA Demonstration Projects, capturing a total of 50 systems across the US. Information shared by several states and independent associations on the types (but not costs) of treatment technologies used by systems is also summarized. Comparisons of predicted costs to realized costs using our limited data yield mixed results. Plotting the capital cost data from the Demonstration Projects against the cost curves for the compliance technologies recommended for smaller systems, we find that the EPA methodology overestimated capital costs in most cases, especially as the size of the system increases (as measured by the design flow rate).


Author(s):  
Victor Khoruzhy ◽  
Tetіana Khomutetska ◽  
Igor Nedashkovskіy

Surface water bodies, which are sources of drinking water supply, receive a significant amount of pollution from wastewater. This negatively affects the ecological condition of water resources and poses a threat to the health and sanitary well-being of the population. The main pollutants of surface sources are: sewage of economic-fecal and industrial sewage, which contain organic pollutants, surfactants, heavy metal ions; oil products coming from industrial sites and urban areas; effluents from livestock farms and storage ponds of production waste; washing of mineral fertilizers and pesticides from agricultural lands. Adjustment of surface springs additionally affects the deterioration of water quality in them. Therefore, existing water treatment technologies may not always provide the required degree of drinking water purification. According to monitoring studies, more than 38% of water samples taken at centralized water supply facilities did not meet regulatory requirements. This situation encourages the search for ways that would create conditions for more efficient operation of water supply systems. Modernization of existing water supply facilities and application of new water treatment technologies can help solve the problem. The article illustrates constructive schemes of shore and channel water intake and treatment facilities, the use of which makes it possible to reduce the dirt retention load on the main treatment facilities, increase the reliability of fish fry protection and improve the ecological condition of reservoirs at water intake sites. For effective removal of organic matter at water treatment plants, it is advisable to use bioreactors and contact-clarifying filters. Such solutions allow not only to increase the productivity of the water treatment plant, but also significantly reduce its construction cost, simplify the operation of facilities and reduce annual operating costs.


2020 ◽  
Vol 10 (4) ◽  
pp. 317-331 ◽  
Author(s):  
Mona Fritz ◽  
Claudia Hohmann ◽  
Felix Tettenborn

Abstract The expansion of water-intensive industrial activities and the impacts of climate change are jeopardising the sufficiency of safe drinking water in several Southeast Asian countries. One is Viet Nam, where geogenic arsenic contamination further limits the availability of freshwater resources with a simultaneous increase in water demand. Innovative and sustainable water treatment technologies are required to meet these challenges. Equally, we assume that the provision of safe drinking water requires tailored business models (BMs). In this study, we focus on the key stakeholders and framework conditions to design tailored BMs providing safe drinking water to the low-income and middle-income population in Viet Nam. We consider decentralised technologies to be suitable due to their lower investment costs for implementation and the avoidance of strong path dependencies. We therefore conducted a literature review and interviews with international experts in the domain of decentralised water treatment technologies. Our results show that relevant aspects include a lack of financial resources, specific characteristics associated with Vietnamese culture, e.g. the importance of relationships and trust in the business domain, lack of education and vocational training, market saturation suggesting co-operation with existing water suppliers, lack of suitable partners, and deficiencies in the institutional environment.


Sign in / Sign up

Export Citation Format

Share Document