Parameter Estimation for Multiple-Input Multiple-Output Modal Analysis of Large Structures

2004 ◽  
Vol 130 (8) ◽  
pp. 921-930 ◽  
Author(s):  
F. Necati Catbas ◽  
David L. Brown ◽  
A. Emin Aktan
2013 ◽  
Vol 2013 ◽  
pp. 1-30 ◽  
Author(s):  
Athanasios G. Lazaropoulos

This review paper reveals the broadband potential of overhead and underground low-voltage (LV) and medium-voltage (MV) broadband over power lines (BPL) networks associated with multiple-input multiple-output (MIMO) technology. The contribution of this review paper is fourfold. First, the unified value decomposition (UVD) modal analysis is introduced. UVD modal analysis is a new technique that unifies eigenvalue decomposition (EVD) and singular value decomposition (SVD) modal analyses achieving the common handling of traditional SISO/BPL and upcoming MIMO/BPL systems. The validity of UVD modal analysis is examined by comparing its simulation results with those of other exact analytical models. Second, based on the proposed UVD modal analysis, the MIMO channels of overhead and underground LV and MV BPL networks (distribution BPL networks) are investigated with regard to their inherent characteristics. Towards that direction, an extended collection of well-validated metrics from the communications literature, such as channel attenuation, average channel gain (ACG), root-mean-square delay spread (RMS-DS), coherence bandwidth (CB), cumulative capacity, capacity complementary cumulative distribution function (CCDF), and capacity gain (GC), is first applied in overhead and underground MIMO/LV and MIMO/MV BPL channels and systems. It is found that the results of the aforementioned metrics portfolio depend drastically on the frequency, the power grid type (either overhead or underground, either LV or MV), the MIMO scheme configuration properties, the MTL configuration, the physical properties of the cables used, the end-to-end distance, and the number, the electrical length, and the terminations of the branches encountered along the end-to-end BPL signal propagation. Third, three interesting findings concerning the statistical properties of MIMO channels of distribution BPL networks are demonstrated, namely, (i) the ACG, RMS-DS, and cumulative capacity lognormal distributions; (ii) the correlation between RMS-DS and ACG; and (iii) the correlation between RMS-DS and CB. By fitting the numerical results, unified regression distributions appropriate for MIMO/BPL channels and systems are proposed. These three fundamental properties can play significant role in the evaluation of recently proposed statistical channel models for various BPL systems. Fourth, the potential of transformation of overhead and underground LV/BPL and MV/BPL distribution grids to an alternative solution to fiber-to-the-building (FTTB) technology is first revealed. By examining the capacity characteristics of various MIMO scheme configurations and by comparing these capacity results against SISO ones, a new promising urban backbone network seems to be born in a smart grid (SG) environment.


2018 ◽  
Vol 173 ◽  
pp. 02015
Author(s):  
Binbin Li ◽  
Weixiong Bai ◽  
Qin Zhang ◽  
Guimei Zheng ◽  
Mingliang Zhang ◽  
...  

Joint DOA-range-polarization estimation with a novel radar system, i.e., spatially separated polarization sensitive random frequency diverse array based on multiple-input multiple-output (SS-PSRFDA-MIMO) radar, is discussed. The proposed array can obtain not only unambiguous range estimation but also polarization parameter estimation. Firstly, the signal model of SS-PSRFDA-MIMO radar is constructed. Secondly, dimension reduction multiple signal classification (DR-MUSIC) algorithm is extended to parameter estimation with the proposed array. Last, simulations demonstrate the proposed algorithm is effective to estimate parameter, and the performance of proposed array is better than that of polarization sensitive frequency diverse array based on MIMO radar. It is worth mentioning that the Cramér–Rao lower bound (CRLB) of range estimation with the proposed array is much lower than that of PSFDA-MIMO radar.


2014 ◽  
Vol 513-517 ◽  
pp. 3385-3388
Author(s):  
Li Li

The problem of Cramér-Rao bound for parameter estimation in wideband bistatic Multiple-Input Multiple-Output (MIMO) radar system is considered. In many applications, it is not appropriate to approximate the wideband signal by the narrowband model. In this paper, we propose a new wideband signal model to accurately estimate parameter for wideband signals from a moving target. The Cramér-Rao bound for target parameter estimation is derived and computed in closed form which shows that the optimal performance is achieved. Target location and parameter estimation performances are evaluated and studied theoretically and via simulations.


2014 ◽  
Vol 556-562 ◽  
pp. 5034-5037 ◽  
Author(s):  
Li Li

The problem of Cramer-Rao bound for parameter estimation in norrowband bistatic Multiple-Input Multiple-Output (MIMO) radar system is considered. In this paper, we propose a new narrowband signal model to accurately estimate parameter from a moving target. The Cramer-Rao bound for target parameter estimation is derived and computed in closed form which shows that the optimal performance is achieved. Target location and parameter estimation performances are evaluated and studied theoretically and via simulations.


2021 ◽  
Vol 7 (2) ◽  
pp. 89-99
Author(s):  
Sapriansa Sapriansa ◽  
Syahfrizal Tahcfulloh

Jenis sistem radar multi-antena ada dua macam yaitu phased-array (PA) dan Multiple-input Multiple-Output (MIMO). Parameter yang digunakan untuk menguji kinerja radar PA dan MIMO ada banyak sekali yang salah satunya adalah estimasi parameter yang berkaitan dengan jumlah target deteksi. Estimasi parameter termasuk di dalamnya yaitu sudut kedatangan sinyal (direction of arrival, DoA) dan amplitudo sinyal pantulan. Penelitian ini mengusulkan perluasan dari pendekatan estimasi parameter yaitu amplitudo and phase estimation (APES) yang dinamakan forward-backward APES (FBAPES). Pendekatan ini memberikan perbaikan resolusi terhadap estimasi amplitudo dan DoA dari sinyal pantulan target radar yang dikomparasikan dengan estimator konvensional seperti least squares (LS). Formulasi dan evaluasi kinerja estimator yang diusulkan akan diuji berdasarkan berbagai faktor seperti besar radar cross section (RCS), resolusi sudut antar dua target, dan jumlah elemen antena di transmitter-receiver (Tx-Rx). Resolusi sudut deteksi yang diperoleh untuk estimator ini lebih baik dari estimator LS, sebagai contoh untuk M = N = 8 maka diperoleh resolusi sudut 3o sedangkan estimator LS sebesar 5,8o. There are two types of multi-antenna radar systems, i.e. the phased-array (PA) and the multiple-input multiple-output (MIMO). There are many parameters used to test the performance of the PA and the MIMO radars, one of which is parameter estimation related to the number of detection targets. Estimated parameters include the angle of arrival of the signal (direction of arrival, DoA) and the amplitude of the reflected signal. This study proposes an extension of the parameter estimation approach, namely amplitude and phase estimation (APES), which is called forward-backward APES (FBAPES). This approach provides improved resolution of the amplitude and DoA estimates of the reflected radar target signal compared to conventional estimators such as least squares (LS). The formulation and evaluation of the performance of the proposed estimator will be carried out based on various factors such as variations in radar cross section (RCS), angular resolution between two targets, and the number of antenna elements in the transmitter-receiver (Tx-Rx). The resolution of the detection angle obtained for this estimator is better than the LS estimator, for example for M = N = 8 then the angle resolution is 3o while the LS estimator is 5.8o.


2001 ◽  
Vol 123 (4) ◽  
pp. 651-658 ◽  
Author(s):  
H. Van der Auweraer ◽  
P. Guillaume ◽  
P. Verboven ◽  
S. Vanlanduit

A new noniterative frequency domain parameter estimation technique is proposed. It is based on a weighted total least squares approach, starting from multiple input multiple output frequency response functions. One of the specific advantages of the technique lies in the very stable identification of the system poles as a function of the specified system order, leading to easy-to-interpret stabilization diagrams. This implies a potential for automating the method and to apply it to “difficult” estimation cases. Several real-life case studies are discussed, one related to holographic modal analysis in the medium frequency range, one to the modal testing of a fully trimmed vehicle.


Sign in / Sign up

Export Citation Format

Share Document