Statistical Analysis of Reference Evapotranspiration on the Tibetan Plateau

2009 ◽  
Vol 135 (2) ◽  
pp. 134-140 ◽  
Author(s):  
Jiansheng Ye ◽  
Anhong Guo ◽  
Guojun Sun
2021 ◽  
Vol 11 (17) ◽  
pp. 8013
Author(s):  
Shanshan Hu ◽  
Ruyi Gao ◽  
Tao Zhang ◽  
Peng Bai ◽  
Rui Zhang

Reference evapotranspiration (ET0) is a key component of hydrologic cycle and it is important for water resources management. Analysis of ET0 changes is particularly critical for understanding the impacts of climatic change on hydrology in ecologically fragile regions. In this study, using the Penman–Monteith method and the Mann–Kendall test, the variation characteristics of ET0 on the Tibetan Plateau (TP) from 1970 to 2018 was analyzed, and the dominant climatic factors controlling the change of ET0 was also explored. The result shows that in TP region: (1) there was an abrupt change in the trend of ET0 around 1997, and the ET0 declined at a rate of −25.9 mm/decade during 1970–1996 but increased by 31.1 mm/decade during 1997–2018; (2) ET0 is most sensitive to solar radiation, then relative humidity, wind speed and mean temperature; (3) the decrease of ET0 before 1997 was mainly due to the decline of wind speed and the increase of relative humidity, while the increase of ET0 after 1997 was mainly due to the decrease of relative humidity. The results of this study can provide data reference for the research of water balance on the TP.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3178
Author(s):  
Yuan Liu ◽  
Qianyang Wang ◽  
Xiaolei Yao ◽  
Qi Jiang ◽  
Jingshan Yu ◽  
...  

Reference evapotranspiration (ET0) is a key factor in the hydrological cycle and energy cycle. In the context of rapid climate change, studying the dynamic changes in ET0 in the Tibetan Plateau (TP) is of great significance for water resource management in Asian countries. This study uses the Penman–Monteith formula to calculate the daily ET0 of the TP and subsequently uses the Mann–Kendall (MK) test, cumulative anomaly curve, and sliding t-test to identify abrupt change points. Morlet wavelet analysis and the Hurst index based on rescaled range analysis (R/S) are utilized to predict the future trends of ET0. The Spearman correlation coefficient is used to explore the relationship between ET0 changes and other climate factors. The results show that the ET0 on the TP exhibited an increasing trend from 1961 to 2017, with the most significant increase occurring in winter; an abrupt change to a tendency to decrease occurred in 1988, and another abrupt change to a tendency to increase occurred in 2005. Spatially, the ET0 of the TP shows an increasing trend from east to west. The change trend of the ET0 on the TP will not be sustainable into the future. In addition, the mean temperature has the greatest impact on the ET0 changes in the TP.


2021 ◽  
Vol 13 (8) ◽  
pp. 1484
Author(s):  
Jianing Fang ◽  
Benjamin Zaitchik

The coupling of rapid warming and wetland degradation on the Tibetan Plateau has motivated studies of climate influence on wetland change in the region. These studies typically examine large, topographically homogeneous regions, whereas conservation efforts sometimes require fine-grained information in rugged terrain. This study addresses topographically constrained wetlands in Eastern Tibetan, where headers report significant wetland degradation. We used Landsat images to examine changes in wetland areas and Sentinel-1 SAR images to investigate water level and vegetation structure. We also analyzed trends in precipitation, growing season length, and reference evapotranspiration in weather station records. Snow cover and the vegetation growing season were quantified using MODIS observations. We analyzed estimates of actual evapotranspiration using the Atmosphere-Land Exchange Inverse model (ALEXI) and the Simplified Surface Energy Balance model (SSEBop). Satellite-informed analyses failed to confirm herders’ accounts of reduced wetland function, as no coherent trends were found in wetland area, water content, or vegetation structure. An analysis of meteorological records did indicate a warming-induced increase in reference evapotranspiration, and both meteorological records and satellites suggest that the growing season had lengthened, potentially increasing water demand and driving wetland change. The discrepancies between the satellite data and local observations pointed to temporal, spatial, and epistemological gaps in combining scientific data with empirical evidence in understanding wetland change on the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document