Incipient Motion of Coarse Particles on a Slope by Regular or Irregular Waves

Author(s):  
N. Erdem Ünal ◽  
M. Bayazit
Author(s):  
Giuseppe R. Tomasicchio ◽  
J. W. van der Meer ◽  
E. van Hijum ◽  
N. Erdem Ünal ◽  
M. Bayazit

2006 ◽  
Vol 53 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Emanuele Terrile ◽  
Ad J.H.M. Reniers ◽  
Marcel J.F. Stive ◽  
Maarten Tromp ◽  
Henk Jan Verhagen

1991 ◽  
Vol 35 ◽  
pp. 397-402
Author(s):  
Takeshi OKABE ◽  
Susumu NAKANO ◽  
Hiromu YOSHIDA

2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


2009 ◽  
Vol 36 (1) ◽  
pp. 80-95
Author(s):  
Achanta Ramakrishna Rao ◽  
Bimlesh Kumar
Keyword(s):  

Alloy Digest ◽  
1998 ◽  
Vol 47 (12) ◽  

Abstract Colmonoy 805 is a nickel-chromium-boron alloy with coarse particles of chromium boride added to give it excellent sliding-type abrasion resistance. The alloy contains chromium boride in the matrix as large added particles. It is supplied only as a crushed powder for application with Colmonoy’s Fuseweld process. This datasheet provides information on composition, physical properties, microstructure, and elasticity. It also includes information on corrosion resistance as well as joining and powder metal forms.Filing Code: Ni-233. Producer or source: Wall Colmonoy Corporation. Originally published September 1976, revised December 1998.


Author(s):  
Б. Дивинский ◽  
B. Divinskiy ◽  
И. Грюне ◽  
I. Gryune ◽  
Р. Косьян ◽  
...  

Acoustic methods belong to contactless measurement means, possess high spatial and time resolution. Thus, the use of multifrequency allows directly profile both concentration and granulometric structure of the suspended substances. In 2008 in the Big Wave Flume (Hanover, Germany) by efforts of the Russian and German scientists there have been carried out the experiment on studying the bottom material suspension laws under the influence of irregular waves. The Aquascat 1000 acoustic back scattering sensor (ABS) manufactured by British company Aquatec (www.aquatecsubsea.com), equipped by a three-frequency transmitter with frequencies 1,0, 2,0 and 3,84 MHz, has been set on distance of 0,75 m from the bottom and 111 m from wave generator at the total depth of 3,2 m. Several dozen series of measurements at various parameters of surface waves have been carried out. The general picture of suspension is so that the external dynamic influence (currents, wave movements, turbulence, gravitation forces) creates a non-uniform field (gradient) of the suspended particles and in most cases due to this the average size of particles undergoes to the spatial-time variations. For this reason while defining the mass concentration of suspended sediment, using the single frequency transmitter there is necessity for numerous definition of the suspension granulometric structure what by isn’t always possible. If two and more frequencies are used the observed results comparison can give the information on average diameters of particles and on that basis the calculation of suspended sediment concentration is possibleLet's emphasize the basic advantages of back scattering acoustic gauges usage: – Obtaining the particles sizes and concentration distribution profiles is possible; – The initial granulometric structure of bottom sediments can be unknown (at use of several frequencies). The following can be referred to some lacks of the device: – The system should be calibrated in laboratory conditions; – In a positive feedback conditions the iterative computing process can converge to zero or to infinity. In this case experiments with a variation of carrier frequencies chosen for the analysis allow partially solve the problem (say experiments with different frequencies pairs, as 2/1 of MHz or 4/2 MHz).


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


Sign in / Sign up

Export Citation Format

Share Document