Experimental Study of the Seismic Behavior of Predamaged Reinforced-Concrete Columns Retrofitted with Basalt Fiber–Reinforced Polymer

2015 ◽  
Vol 19 (6) ◽  
pp. 04015016 ◽  
Author(s):  
Gao Ma ◽  
Hui Li
2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yang Lv ◽  
Xueqian Wu ◽  
Mengran Gao ◽  
Jiaxin Chen ◽  
Yuhao Zhu ◽  
...  

Basalt fiber has arisen new perspectives due to the potential low cost and excellent mechanical performance, together with the use of environmental friendly coir can be beneficial to the development of sustainable construction. In this study, a new composite structure called basalt fiber reinforced polymer (BFRP) tube encased coconut fiber reinforced concrete (CFRC) is developed. The 28-day compression strength of the plain concrete is about 15 MPa, which represents the low-strength poor-quality concrete widely existing in many old buildings and developing countries. Three types of BFRP tubes, i.e., 2-layer, 4-layer, and 6-layer, with the inner diameter of 100 mm and a length of 520 mm, were prepared. The plain concrete (PC) and CFRC were poured and cured in these tubes to fabricated BFRP tube confined long cylindrical beams. Three PC cylindrical beams and 3 CFRC cylindrical beams were prepared to be the control group. The four-point bending tests of these specimens were carried out to investigate the enhancement due to the BFRP tube and coir reinforcement. The load-carrying capacity, force-displacement relationship, failure mode, and the cracking moment were analyzed. Results show that both BFRP tube confined plain concrete (PC) and BFRP tube confined CFRC have excellent flexural strength and ductility, and the inclusion of the coir can further enhance the ductility of the concrete.


Sign in / Sign up

Export Citation Format

Share Document