Implementation of a Long-Term Bridge Weigh-In-Motion System for a Steel Girder Bridge in the Interstate Highway System

2009 ◽  
Vol 14 (6) ◽  
pp. 418-423 ◽  
Author(s):  
A. J. Cardini ◽  
John T. DeWolf
1997 ◽  
Vol 1594 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Vijay K. Saraf ◽  
Andrzej S. Nowak

The objective of the study was to verify the load-carrying capacity of an existing steel girder bridge. The selected structure was a 70-year-old deteriorated bridge in Michigan. The load-carrying capacity of the bridge was in question because of extensive corrosion of the steel girders. An initial rating indicated that the bridge had a marginal operating rating factor for 11-axle two-unit trucks, which are the heaviest vehicles allowed in Michigan. To avoid the load limit posting, it was decided that investigators would verify by nondestructive testing whether the bridge is safe to carry normal truck traffic. The test procedures used on the selected bridge included tests for obtaining stress histogram measurements and weigh-in-motion measurements and a proof load test. The methodology and the results are described.


2021 ◽  
Vol 11 (2) ◽  
pp. 745
Author(s):  
Sylwia Stawska ◽  
Jacek Chmielewski ◽  
Magdalena Bacharz ◽  
Kamil Bacharz ◽  
Andrzej Nowak

Roads and bridges are designed to meet the transportation demands for traffic volume and loading. Knowledge of the actual traffic is needed for a rational management of highway infrastructure. There are various procedures and equipment for measuring truck weight, including static and in weigh-in-motion techniques. This paper aims to compare four systems: portable scale, stationary truck weigh station, pavement weigh-in-motion system (WIM), and bridge weigh-in-motion system (B-WIM). The first two are reliable, but they have limitations as they can measure only a small fraction of the highway traffic. Weigh-in-motion (WIM) measurements allow for a continuous recording of vehicles. The presented study database was obtained at a location that allowed for recording the same traffic using all four measurement systems. For individual vehicles captured on a portable scale, the results were directly compared with the three other systems’ measurements. The conclusion is that all four systems produce the results that are within the required and expected accuracy. The recommendation for an application depends on other constraints such as continuous measurement, installation and operation costs, and traffic obstruction.


2014 ◽  
Vol 129 (3) ◽  
pp. 1085-1140 ◽  
Author(s):  
Treb Allen ◽  
Costas Arkolakis

Abstract We develop a general equilibrium framework to determine the spatial distribution of economic activity on any surface with (nearly) any geography. Combining the gravity structure of trade with labor mobility, we provide conditions for the existence, uniqueness, and stability of a spatial economic equilibrium and derive a simple set of equations that govern the relationship between economic activity and the geography of the surface. We then use the framework to estimate the topography of trade costs, productivities and amenities in the United States. We find that geographic location accounts for at least twenty percent of the spatial variation in U.S. income. Finally, we calculate that the construction of the interstate highway system increased welfare by 1.1 to 1.4 percent, which is substantially larger than its cost.


2008 ◽  
Vol 385-387 ◽  
pp. 845-848
Author(s):  
Moe M.S. Cheung ◽  
Kevin K.L. So ◽  
Xue Qing Zhang

This paper proposes a life-cycle cost (LCC) management methodology that integrates corrosion deterioration and fatigue damage mechanisms. This LCC management methodology has four characterized features: (1) corrosion deterioration and fatigue damage models are used to predict the time when the pre-defined limits are reached; (2) the performance of the steel girder is measured by condition state sets in which deflection, moment and shear capacities and fatigue strength limits are considered altogether; (3) the cost-effectiveness of management strategies are measured by the performance improvement per unit of money spent; and (4) the LCC model includes initial design/construction cost, inspection cost, maintenance cost, repair/rehabilitation cost and failure cost. A steel girder bridge is used as an example to demonstrate the application of the proposed LCC management methodology.


Author(s):  
Abheetha Peiris ◽  
Issam Elias Harik

In the past, a number of steel girder-reinforced concrete deck bridges on county roads in the United States have been built as non-composite. Most of these bridges currently have load postings limiting the capacity of bus and truck loads on their roadways. Recent research showed that post installed high strength bolts could be used as shear connectors in rehabilitation work to achieve partial composite design by deploying 30% to 50% of the connectors typically required for a full composite design. This paper presents details on the analysis, design, and field application of post-installed shear connectors on a non-composite concrete deck steel girder bridge in Kentucky. In order to minimize traffic disruption and construction costs, the shear connectors were inserted on the bottom side of the deck through the top flange of the steel girder. While the load rating increased by 132%, field tests conducted before and after installation of the shear connectors showed that the bridge's live load deflections were reduced by more than 27%.


Sign in / Sign up

Export Citation Format

Share Document