Grid-Based Geoprocessing for Integrated Global Navigation Satellite System Simulation

2012 ◽  
Vol 26 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Hassan A. Karimi ◽  
Benjamin Zimmerman ◽  
Duangduen Roongpiboonsopit ◽  
Abdelmounaam Rezgui
2017 ◽  
Vol 145 (2) ◽  
pp. 637-651 ◽  
Author(s):  
S. Mark Leidner ◽  
Thomas Nehrkorn ◽  
John Henderson ◽  
Marikate Mountain ◽  
Tom Yunck ◽  
...  

Global Navigation Satellite System (GNSS) radio occultations (RO) over the last 10 years have proved to be a valuable and essentially unbiased data source for operational global numerical weather prediction. However, the existing sampling coverage is too sparse in both space and time to support forecasting of severe mesoscale weather. In this study, the case study or quick observing system simulation experiment (QuickOSSE) framework is used to quantify the impact of vastly increased numbers of GNSS RO profiles on mesoscale weather analysis and forecasting. The current study focuses on a severe convective weather event that produced both a tornado and flash flooding in Oklahoma on 31 May 2013. The WRF Model is used to compute a realistic and faithful depiction of reality. This 2-km “nature run” (NR) serves as the “truth” in this study. The NR is sampled by two proposed constellations of GNSS RO receivers that would produce 250 thousand and 2.5 million profiles per day globally. These data are then assimilated using WRF and a 24-member, 18-km-resolution, physics-based ensemble Kalman filter. The data assimilation is cycled hourly and makes use of a nonlocal, excess phase observation operator for RO data. The assimilation of greatly increased numbers of RO profiles produces improved analyses, particularly of the lower-tropospheric moisture fields. The forecast results suggest positive impacts on convective initiation. Additional experiments should be conducted for different weather scenarios and with improved OSSE systems.


2015 ◽  
Vol 33 (3) ◽  
pp. 445
Author(s):  
Fabricio Dos Santos Prol ◽  
Paulo De Oliveira Camargo

ABSTRACT. Spatial and temporal variation of the electron density in the atmosphere makes the ionosphere a difficult region to model. A major difficulty arises due to the incomplete geometrical coverage of the Global Navigation Satellite System (GNSS) for tomographic applications, making the ionospheric tomographic system an ill-conditioned problem. Although the tomographic system is ill-conditioned, several techniques have been developed to partially overcome the problem. There is great interest in using tomographic techniques for ionospheric imaging, because it allows describing the ionosphere in terms of electron density, which is an important parameter for studying the behavior of the physical processes that occur in the upper atmosphere. In Brazil, there are additional interests in the tomographic techniques, due to the peculiar characteristics of the ionosphere and of the geomagnetic field over the region. In this direction, methods of ionospheric tomographic reconstruction are presented and discussed in this review. Particular emphasis is given to the mathematical formulation from grid-based and function-based methods and are presented some of their main advantages and limitations.Keywords: TEC, Inverse Problem, Grid-Based Tomography, Function-Based Tomography, Ionospheric Imaging. RESUMO. A variação espaço-temporal da densidade eletrônica na atmosfera terrestre torna a ionosfera uma região de difícil modelagem. A principal dificuldade no imageamento da ionosfera com o GNSS (Global Navigation Satellite System ) é devido à geometria dos satélites, pois torna o sistema tomográfico mal condicionado. Muito embora a geometria não permita solução direta do sistema, diversas técnicas foram desenvolvidas para parcialmente superar tal problema. Há grande interesse no uso de técnicas de tomografia para o imageamento da ionosfera, pois permitem descrever a ionosfera ao nível da densidade eletrônica, sendo este um importante parâmetro para compreender os processos físicos que ocorrem na alta atmosfera. No Brasil, existem interesses adicionais no imageamento ionosférico por meio de técnicas tomográficas devido às características peculiares da ionosfera e do campo geomagnético sobre a região. Neste sentido, métodos utilizados para a reconstrução tomográfica da ionosfera são apresentados e discutidos nesta revisão. Uma ênfase especial é dada para a formulação matemática dos métodos baseados em células e em funções, além da apresentação de algumas de suas principais vantagens e limitações.Palavras-chave: TEC, Problema Inverso, Tomografia Baseada em Células, Tomografia Baseada em Funções, Imageamento Ionosférico.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


Sign in / Sign up

Export Citation Format

Share Document