Influence of Tourmaline on the Anaerobic Ammonium Oxidation Process in Sequencing Batch Reactors

2017 ◽  
Vol 143 (9) ◽  
pp. 04017053 ◽  
Author(s):  
Chong Tan ◽  
Di Cui ◽  
Yingjie Liu ◽  
Yubin Ji
2019 ◽  
Vol 6 (12) ◽  
pp. 3501-3512 ◽  
Author(s):  
Gui-Feng Li ◽  
Bao-Cheng Huang ◽  
Zheng-Zhe Zhang ◽  
Ya-Fei Cheng ◽  
Nian-Si Fan ◽  
...  

The impacts of engineered nanomaterials on the performance of the anaerobic ammonium oxidation process and their intoxication mechanisms are summarized.


2013 ◽  
Vol 35 (8) ◽  
pp. 1145-1154 ◽  
Author(s):  
Ziye Hu ◽  
Tommaso Lotti ◽  
Mark van Loosdrecht ◽  
Boran Kartal

2017 ◽  
Vol 75 (11) ◽  
pp. 2580-2585 ◽  
Author(s):  
Jun Cheng ◽  
Liang Zhang ◽  
Yandong Yang ◽  
Shujun Zhang ◽  
Xiaoyu Han ◽  
...  

For enhancing the partial nitritation-anammox (PN/A) process, the effects of granule fraction on system performance were investigated in this study. Two sequencing batch reactors (SBRs) were inoculated with PN/A biomass with a floc mass fraction of 53%. In SBR1, when the nitrogen removal rate (NRR) was stable, flocculent sludge was gradually discharged from the reactor using a screen, and the granule fraction was therefore increased. However, nitrogen removal was not improved and finally deteriorated due to the loss of nitritation activity. In SBR2, most flocculent sludge was eliminated and granular proportion was maintained at over 90% by controlling a short settling and decanting time. NRR was low initially but gradually improved to 1.23 kg N/(m3·d), which was 54% higher than SBR1. Ammonium oxidation activities of flocs and granules were respectively measured. Results suggested that the increase of nitritation activity in the granules was the main reason for the improvement of nitrogen removal in SBR2.


2015 ◽  
Vol 23 (2) ◽  
pp. 1344-1352 ◽  
Author(s):  
Li-dong Shen ◽  
Hong-sheng Wu ◽  
Zhi-qiu Gao ◽  
Yun-jie Ruan ◽  
Xiang-hua Xu ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3004
Author(s):  
Dominika Grubba ◽  
Joanna Majtacz

Anaerobic ammonia-oxidizing bacteria have a more comprehensive metabolism than expected - there may be other electron acceptors that oxidize ammonium nitrogen under anaerobic conditions, in addition to the well-known nitrite nitrogen, one of which is sulfate in the sulfammox process. Sulfate-containing compounds are part of the medium for the anammox process, but their concentrations are not particularly high (0.2 g MgSO4 ∙ 7H2O/dm3 and 0.00625 g FeSO4/dm3). They can react to some extent with influent ammonium nitrogen. In this work, tests were carried out in two sequencing batch reactors with granular sludge. The first reactor (R1) operated in a 6 h cycle, and the concentration of the inflowing sulfate was kept at 44 mg/dm3∙d. The second reactor (R2) was operated until the 36th day in a 6 h cycle; the influencing concentration was 180 mg SO42−/dm3∙d from the 37th to 64th day in a 3 h cycle, with an influencing concentration of 360 mg SO42−/dm3∙d; and from the 65th to 90th day, the reactor was operated again in a 6 h cycle with an influencing concentration of 180 mg SO42−/dm3∙d. Along with the increased share of sulfate, both the ammonium utilization rate and specific anammox activity showed an increasing trend. As soon as the sulfate dosage was reduced, the ammonium utilization rate and specific anammox activity values dropped. Therefore, it can be concluded that sulfate-containing compounds contribute to the efficiency and rate of the anammox process.


Sign in / Sign up

Export Citation Format

Share Document