scholarly journals Promotion of partial nitritation-anammox process by improving granule proportion

2017 ◽  
Vol 75 (11) ◽  
pp. 2580-2585 ◽  
Author(s):  
Jun Cheng ◽  
Liang Zhang ◽  
Yandong Yang ◽  
Shujun Zhang ◽  
Xiaoyu Han ◽  
...  

For enhancing the partial nitritation-anammox (PN/A) process, the effects of granule fraction on system performance were investigated in this study. Two sequencing batch reactors (SBRs) were inoculated with PN/A biomass with a floc mass fraction of 53%. In SBR1, when the nitrogen removal rate (NRR) was stable, flocculent sludge was gradually discharged from the reactor using a screen, and the granule fraction was therefore increased. However, nitrogen removal was not improved and finally deteriorated due to the loss of nitritation activity. In SBR2, most flocculent sludge was eliminated and granular proportion was maintained at over 90% by controlling a short settling and decanting time. NRR was low initially but gradually improved to 1.23 kg N/(m3·d), which was 54% higher than SBR1. Ammonium oxidation activities of flocs and granules were respectively measured. Results suggested that the increase of nitritation activity in the granules was the main reason for the improvement of nitrogen removal in SBR2.

2021 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
Zulkarnaini Zulkarnaini ◽  
Puti Sri Komala ◽  
Arief Almi

The anaerobic ammonium oxidation (anammox) biofilm process commonly uses various inorganic carriers to enhance nitrogen removal under anaerobic conditions. This study aims to analyze the performance of nitrogen removal in anammox process using sugarcane bagasse as an organic carrier. The experiment was carried out by using an up‐flow anaerobic sludge blanket (UASB) reactor for treating artificial wastewater at room temperature. The reactor was fed with ammonium and nitrite with the concentrations of 70‐150 mg–N/L and variations in the hydraulic retention time of 24 and 12 h. The granular anammox belongs to the genus Candidatus Brocadia sinica that was added as an inoculum of the reactor operation. The experimental stoichiometric of anammox for ΔNO2‐–N: ΔNH4+–N and ΔNO3‐: ΔNH4+ were 1.24 and 0.18, respectively, which is similar to anammox stoichiometry. The maximum Nitrogen Removal Rate (NRR) has achieved 0.29 kg–N/m3.d at Nitrogen Loading Rate (NLR) 0.6 kg–N/m3.d. The highest ammonium conversion efficiency (ACE) and nitrogen removal efficiency (NRE) were 88% and 85%, respectively. Based on this results, it indicated that sugarcane bagasse as organic carriers could increase the amount of total nitrogen removal by provided of denitrification process but inhibited the anammox process at a certain COD concentration.


2013 ◽  
Vol 67 (5) ◽  
pp. 968-975 ◽  
Author(s):  
C. G. Casagrande ◽  
A. Kunz ◽  
M. C. De Prá ◽  
C. R. Bressan ◽  
H. M. Soares

The anaerobic ammonium oxidation (ANAMMOX) is a chemolithoautotrophic process, which converts NH4+ to N2 using nitrite (NO2−) as the electron acceptor. This process has very high nitrogen removal rates (NRRs) and is an alternative to classical nitrification/denitrification wastewater treatment. In the present work, a strategy for nitrogen removal using ANAMMOX process was tested evaluating their performance when submitted to high loading rates and very short hydraulic retention times (HRTs). An up-flow ANAMMOX column reactor was inoculated with 30% biomass (v v−1) fed from 100 to 200 mg L−1 of total N (NO2−-N + NH4+-N) at 35 °C. After start-up and process stability the maximum NRR in the up-flow anaerobic sludge blanket (UASB) reactor was 18.3 g-N L−1 d−1 operated at 0.2 h of HRT. FISH (fluorescence in situ hybridization) analysis and process stoichiometry confirmed that ANAMMOX was the prevalent process for nitrogen removal during the experiments. The results point out that high NRRs can be obtained at very short HRTs using up-flow ANAMMOX column reactor configuration.


2010 ◽  
Vol 113-116 ◽  
pp. 662-665
Author(s):  
Wen De Tian ◽  
Kyoung Jin An ◽  
Zhi Wei Li

This study focused on the feasibility of autotrophic nitrogen removal to treat high ammonia leachate, using combined partial Nitritation and Anammox process. In partial nitritation reactor, the optimal operation condition was found with influent ammonium concentration of 1200 mg/L, DO about 3 mg/L, HRT 3 days and temperature about 31°C at the ratio of NO2-N / NH4-N effluent kept at 1.1, which is a prerequisite for the application of Anammox. In Anammox reactor, more than 85% ammonium is removed at HRT 8 days, temperature 28±1°C, and pH 8. The removal rate of nitrogen and COD in combined partial Nitritation and Anammox process are 90% and 74%, respectively. Thus, a combined process of partial nitritation and a subsequent Anammox could be an alternative solution for ammonium removal for leachate.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


2014 ◽  
Vol 1073-1076 ◽  
pp. 297-300
Author(s):  
Jia Jing Sun ◽  
Lei Zhang ◽  
Luo Wang ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of acetate on anammox process. The nitrogen removal rate of anammox process was elevated at low acetate content (1 mmol/L) and decreased at high acetate content (3 and 4 mmol/L). The ratios among NH4+-N, NO2--N and NO3--N were not related acetate content and remained at 1:1.50:0.07, but the ratios between acetate and three forms of nitrogen were acetate dependent.


2011 ◽  
Vol 64 (5) ◽  
pp. 1009-1015 ◽  
Author(s):  
G. Cema ◽  
E. Płaza ◽  
J. Trela ◽  
J. Surmacz-Górska

A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m−3. At a DO concentration of 4 g O2 m−3, an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m−2d−1 (0.3 ± 0.1 kg N m−3d−1) at the average dissolved oxygen concentration of 2.3 g O2 m−3. The maximum value of a nitrogen removal rate amounted to 1.9 g N m−2d−1 (0.47 kg N m−3d−1) and was observed for a DO concentration equal to 2.5 g O2 m−3. It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3004
Author(s):  
Dominika Grubba ◽  
Joanna Majtacz

Anaerobic ammonia-oxidizing bacteria have a more comprehensive metabolism than expected - there may be other electron acceptors that oxidize ammonium nitrogen under anaerobic conditions, in addition to the well-known nitrite nitrogen, one of which is sulfate in the sulfammox process. Sulfate-containing compounds are part of the medium for the anammox process, but their concentrations are not particularly high (0.2 g MgSO4 ∙ 7H2O/dm3 and 0.00625 g FeSO4/dm3). They can react to some extent with influent ammonium nitrogen. In this work, tests were carried out in two sequencing batch reactors with granular sludge. The first reactor (R1) operated in a 6 h cycle, and the concentration of the inflowing sulfate was kept at 44 mg/dm3∙d. The second reactor (R2) was operated until the 36th day in a 6 h cycle; the influencing concentration was 180 mg SO42−/dm3∙d from the 37th to 64th day in a 3 h cycle, with an influencing concentration of 360 mg SO42−/dm3∙d; and from the 65th to 90th day, the reactor was operated again in a 6 h cycle with an influencing concentration of 180 mg SO42−/dm3∙d. Along with the increased share of sulfate, both the ammonium utilization rate and specific anammox activity showed an increasing trend. As soon as the sulfate dosage was reduced, the ammonium utilization rate and specific anammox activity values dropped. Therefore, it can be concluded that sulfate-containing compounds contribute to the efficiency and rate of the anammox process.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 19-26 ◽  
Author(s):  
B. Szatkowska ◽  
G. Cema ◽  
E. Plaza ◽  
J. Trela ◽  
B. Hultman

The ability of bacterial cultures to create biofilm brings a possibility to enhance biological wastewater treatment efficiency. Moreover, the ability of Anammox and Nitrosomonas species to grow within the same biofilm layer enabled a one-stage system for nitrogen removal to be designed. Such a system, with Kaldnes rings as carriers for biofilm growth, was tested in a technical pilot plant scale (2.1 m3) at the Himmerfjärden Waste Water Treatment Plant (WWTP) in the Stockholm region. The system was directly supplied with supernatant originating from dewatering of digested sludge containing high ammonium concentrations. Nearly 1-year of operational data showed that during the partial nitritation/Anammox process, alkalinity was utilised parallel to ammonium removal. The process resulted in a small pH drop, and its relationship with conductivity was found. The nitrogen removal rate for the whole period oscillated around 1.5 g N m−2d−1 with a maximum value equal to 1.9 g N m−2d−1. Parallel to the pilot plant experiment, a series of batch tests were run to investigate the influence on removal rates of different dissolved oxygen conditions and addition of nitrite. The highest nitrogen removal rate (5.2 g N m−2d−1) in batch tests was obtained when the Anammox process was stimulated by the addition of nitrite. In the simultaneous partial nitritation and Anammox process, the partial nitritation was the rate-limiting step.


2014 ◽  
Vol 675-677 ◽  
pp. 410-415
Author(s):  
Hang Li ◽  
Lei Zhang ◽  
Zhi Xing Li ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of butyrate on anammox process. The nitrogen removal rate of anammox process was elevated at low butyrate content (1 mmol/L) and decreased at high butyrate content (3 mmol/L). NH4+-N:NO2--N:NO3--N:butyrate ratio was 1:1.25:0.08:0.04 and 1:7.26:0.10:1.85 when butyrate concentration was 1 mmol/L and 3 mmol/L.


2020 ◽  
Vol 82 (12) ◽  
pp. 2990-3002
Author(s):  
Han Yang ◽  
Liangwei Deng ◽  
Youqian Xiao ◽  
Hongnan Yang ◽  
Hong Wang ◽  
...  

Abstract In this study, the performance and mechanism of nitrogen removal in sequencing batch reactors (SBRs) with and without zero-valent iron (ZVI) was investigated. The results showed that ZVI had a capacity to promote -N conversion, -N accumulation and total inorganic nitrogen (TIN) removal, with the TIN removal rate being increased by 29.45%. The ZVI also had a significant impact on microbial community structure by means of high-throughput pyrosequencing, increasing the enrichment of Anammox (anaerobic ammonium oxidation) bacteria Candidatus Brocadia and Feammox (anaerobic ferric ammonium oxidation) bacteria Ignavibacterium. With ZVI addition, the main pathway of nitrogen removal was changed from nitrification-heterotrophic denitrification to Anammox and Feammox.


Sign in / Sign up

Export Citation Format

Share Document