Bearing Capacity of Rectangular Footings on Multilayer Geosynthetic-Reinforced Granular Fill over Soft Soil

2017 ◽  
Vol 17 (9) ◽  
pp. 04017069 ◽  
Author(s):  
Subinay Saha Roy ◽  
Kousik Deb
1999 ◽  
Vol 36 (5) ◽  
pp. 793-806 ◽  
Author(s):  
K M Lee ◽  
V R Manjunath ◽  
D M Dewaikar

Laboratory model tests have been carried out using a rigid strip footing supported on dense sand overlying soft clay with and without a layer of geotextile reinforcement at the interface. The study aimed at determining the effect of geotextile reinforcement and the thickness of a sand layer on the ultimate bearing capacity and settlement characteristics of the footing resting on a granular fill - soft soil system. It was found that the bearing capacity increases with an increase in the ratio of sand thickness to footing width until it reaches a critical value, which can be considered as the optimum limit of improvement of the bearing capacity of the layered soil. The installation of a geotextile reinforcement at the interface resulted in an appreciable increase in bearing capacity and decrease in settlement of the footing. The optimum thickness of the sand layer for a geotextile-reinforced foundation was found to be 0.8 times the width of the footing, which was significantly lower than that of an unreinforced foundation. The results of the laboratory model tests were validated by a comparison with the results of a finite element analysis. The results obtained using the finite element model compared well with data obtained from the laboratory tests. Additional parametric study was carried out by the finite element model to supplement the results of the laboratory model tests. Design recommendations are given based on the results of the finite element model and laboratory model studies for a rigid footing supported on a reinforced granular fill - soft soil system. Key words: model tests, footing, bearing capacity, granular fill, clays, finite elements, geotextiles.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.


Author(s):  
Me ti ◽  
Tri Harianto ◽  
Abdul Rachman Djamaluddin ◽  
Achmad Bakri Muhiddin

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhe Wang ◽  
Shuwei Wu ◽  
Kaiwen Weng ◽  
Wangjing Yao ◽  
Sifa Xu ◽  
...  

Fiber-reinforced polymer (FRP) composite sheet piles are usually favored for slope and river-retaining structures due to their construction and environmental efficiency. Their applications, however, have been hindered by the lack of understanding of the bearing capacity. This paper studies the vertical and lateral bearing capacity of FRP composite sheet piles through three full-scale tests conducted in Haiyan, a soft soil site in the Yangtze River Delta of China. In the three tests, we measured the vertical bearing capacity of the FRP composite sheet piles, the bearing capacity of the composite foundation, and the lateral capacity of the FRP composite sheet piles, respectively. The test results show that the Q-S (load on the top of the pile versus settlement) curve of the FRP composite sheet piles exhibits a steep fall while that of the composite foundation is relatively flat. Moreover, the ultimate bearing capacity of the FRP composite sheet piles is measured to reach 23.8 kN while that of the composite foundation increases by 47.1 %, reaching 35.0 kN. It shows that the FRP composite sheet piles under the composite foundation have a favorable bearing performance. Finally, the final horizontal displacement of the FRP composite sheet pile in the reinforced area with anchoring the sheet pile is smaller than the final horizontal displacement in the nonreinforced area, indicating that the horizontal bearing capacity can be significantly improved by anchoring the sheet pile.


2020 ◽  
Vol 857 ◽  
pp. 319-327
Author(s):  
Moataz A. Al-Obaydi ◽  
Zeena A. Al-Kazzaz

Stone columns have been used widely to improve the engineering properties of the weak soil. Most of the previous works considered a circular section for the stone columns. In the present study, finite element analysis has been carried out to investigate the effect of stone columns shape and length on the settlement and bearing capacity of soft soil. Accordingly, three types of cross sectional shape for stone columns have been selected which they are circular, rectangular, and square sections with equivalent area. Various length of columns are adopted with diameter of 0.75m that achieved length to diameter or equivalent diameter ratios (L/d=2, 4, 6, 8, and 10) of columns spacing (S/d=3). The results show that the stone columns has tangible effects on the settlement of the soil while has minor effects on the bearing capacity. The settlement of the treated soil with stone columns have L/d=2, reduces by 18.0, 17.3, and 19.3% for circular, rectangular , and square sections respectively. With increasing length of the columns to L/d=10, further reductions in the settlement obtained of (27.1, 28.1, and 27.0%). Bearing capacity of the soil increased slightly with length of the stone columns. Almost all cross sectional shapes of the columns give bearing capacity about same. The increased in the bearing capacity of the treated soil with stone columns have L/d=2, not exceeded 10% for all sectional types. The average increments in bearing capacity when L/d=10 are 12 and 15% at settlement 50 and 100mm respectively. Insignificant changes in bearing capacity upon increasing length of columns from L/d=2 to 10 of maximum 5%. The plastic zone recedes with the increasing length of the stone columns. Finally, from the results obtained, it can be concluded that the stone columns shape has negligible effects on the settlement and bearing capacity of the soil.


Sign in / Sign up

Export Citation Format

Share Document