Prediction Model for Performance Evaluation of Tunnel Excavation in Blocky Rock Mass

2018 ◽  
Vol 18 (1) ◽  
pp. 04017125 ◽  
Author(s):  
Nishant Roy ◽  
Rajib Sarkar ◽  
Shiv Dayal Bharti
2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2021 ◽  
Vol 833 (1) ◽  
pp. 012198
Author(s):  
A Di Giulio ◽  
D Sebastiani ◽  
M Cinelli ◽  
R Ginanneschi ◽  
G Zanetto ◽  
...  

2020 ◽  
Vol 157 ◽  
pp. 06002
Author(s):  
Ivana Nedevska ◽  
Zlatko Zafirovski ◽  
Slobodan Ognjenovic ◽  
Ivona Nedevska ◽  
Vasko Gacevski

Before taking any measures to build a tunnel, the rock (soil) is in a primary stress state, which means that the stress state is a function of the thickness of the overburden. At the moment when the measures necessary to excavate a tunnel are taken, the rock state changes from primary to secondary, leading to stress concentration, especially in the tunnel abutments. If the rock is capable of accepting these stresses, a state of equilibrium is reached after certain deformations. Plastic deformations can occur if the stresses are larger than the strength of the rock mass. To avoid excessive deformations or collapse of the rock and the tunnel excavation, it is necessary to place a support. The achieved factor of safety is a function of both the support type and the time when the support is installed. This paper shall present a numerical example of different pressures considered in order to obtain the rock’s reaction curve.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1306
Author(s):  
Yanbin Fu ◽  
Kaihang Han ◽  
Dong Su ◽  
Xiaochao Pang ◽  
Xiaohua Bao ◽  
...  

The construction of metro tunnels in urban areas often encounters existing underground structures, such as the pile foundations of adjacent existing buildings. Under the mutual effects and impacts of pile foundation load and tunnel excavation, the soil around tunnel and pile foundations can experience stress redistribution or even yield prior to support installation, which could adversely affect and even damage the adjacent pile foundations. This paper proposes an effective prediction model consisted of axisymmetric tunnel and pile foundation to investigate the shape and range of potential plastic zones induced by tunnel excavation adjacent to pile foundations. Then the results obtained from the proposed method are compared with the existing approaches and numerical simulations, which shows that the shape of the potential plastic zone develops towards a butterfly shape in a gravity field, similar to those from numerical simulations. Finally, a parametric analysis is performed to investigate the influences of different parameters, such as soil parameters, axisymmetric boundary conditions, and pile parameters on the boundaries of the potential plastic zone. This proposed prediction model might provide a certain basis for making protective measures for existing pile foundations influenced by tunnel excavation, and provide a quick estimate of the boundaries of the potential plastic zone induced by tunnel excavation adjacent to pile foundations in a gravity field, thus resulting in time and cost savings.


Sign in / Sign up

Export Citation Format

Share Document