Resistance of Caisson Tip with Internal Bevels for Suction Caissons Penetrating into Clay

Author(s):  
Yuqi Wu ◽  
Qing Yang ◽  
Dayong Li ◽  
Yukun Zhang ◽  
Teng Wang
Keyword(s):  
Author(s):  
Mostafa Zeinoddini ◽  
Mahmood Nabipour

Since their inception suction caisson foundations have presented themselves as proven means of anchoring floating production systems and fixed offshore structures. The pull-out capacity of suction caissons remains a critical issue in their applications, and in order to produce effective designs, reliable methods of predicting the capacity are required. In this paper results from a numerical investigation on the behaviour of the suction caissons in clays against pull-out loading have been presented. Soil nonlinearities, soil/caisson interactions and the effects from the suction on the behaviour have been taken into account. A linear relationship has been observed between the soil cohesion values and the pull-out capacity. Under drained conditions, beyond specific limits of soil cohesion values, the increase in the cohesion value have found to demonstrate no further influence on the pull-out capacity. The soil internal friction angle has been noticed to have an exponential increasing effect on the pull-out capacity. With constant values of the caisson diameter, an increase in the aspect ratio noticed to have a second order effect of the friction originated part and a linear influence on the cohesion originated part of the resistance. With constant values of the caisson length, an increase in the aspect ratio values has found to result in an exponential decrease of the pull-out capacity. Based on the obtained numerical results simple formulations and approximations have been proposed in order to estimate the effects of the studied parameters on the pull-out capacities.


2016 ◽  
Vol 60 ◽  
pp. 109-120 ◽  
Author(s):  
Fei Chen ◽  
Jijian Lian ◽  
Haijun Wang ◽  
Fang Liu ◽  
Hongzhen Wang ◽  
...  

2010 ◽  
Vol 136 (8) ◽  
pp. 1137-1147 ◽  
Author(s):  
L. F. Gonzalo Vásquez ◽  
Dilip R. Maniar ◽  
John L. Tassoulas

Author(s):  
Mahmood Nabipour ◽  
Mostafa Zeinoddini ◽  
Mahmood R. Abdi

The pull-out performance of conventional upright suction caissons has been investigated by different researchers. However, no attention has been formerly paid to tapered suction caissons. Some numerical studies already conducted by the authors demonstrated that tapered caissons exhibit pull-out capacities well above than that from their corresponding upright caissons. This paper deals with different failure mechanisms of tapered suction caissons and discusses some reason for their superior performance. A numerical approach has been used and different combinations of caisson types/ soil categories have been examined. With tapered suction caissons two different modes of failure have been discerned. The first mode has been noticed to develop in weak clays and sands under drained conditions. This mode corresponds to a shear sliding failure in the soil plug along the caisson’s interior wall. Concurrently a soil wedge is formed in the soil body adjacent to the caisson. The second mode of failure has been observed in higher strength drained clays and undrained clays and sands. With this failure mode a local failure at the bottom of the soil plug has been noticed to happen. At the same time the failure is extended to the lower surfaces of a soil wedge outside of the caisson. The detached soil plug accompanies the caisson in its movement upward following the local failure.


2004 ◽  
Author(s):  
Richard A. Coffman ◽  
Rami M. El-Sherbiny ◽  
Alan F. Rauch ◽  
Roy E. Olson
Keyword(s):  

2021 ◽  
Author(s):  
Ragini Gogoi ◽  
Charles P. Aubeny ◽  
Phillip Watson ◽  
Fraser Bransby

Abstract Suction caissons have emerged as a viable solution for the foundations of offshore wind turbines, which are gaining momentum worldwide as an alternate energy source. When used in a multi-bucket jacket system, the system capacity is often governed by the uplift capacity of the windward bucket foundation. Seabed conditions at offshore windfarm sites often comprise dense sand where the soil response may be drained, partially drained or undrained depending on the loading regime, the foundation dimensions and the soil conditions. Given the large difference in uplift capacity of caissons for these different drainage conditions, predicting the behavior of a suction caisson under a range of drainage conditions becomes a paramount concern. Consequently, this paper presents the findings of a coupled finite element investigation of the monotonic uplift response of the windward caisson of a multi-bucket jacket system in a typical dense silica sand for a range of drainage conditions. The study adopts a Hypoplastic soil constitutive model capable of simulating the stress-strain-strength behavior of dense sand. This choice is justified by conducting a comparative study with other soil models — namely the Mohr Coulomb and bounding surface sand models — to determine the most efficient soil failure model to capture the complex undrained behavior of dense sand. The numerical predictions made in this study are verified by recreating the test conditions adopted in centrifuge tests previously conducted at the University of Western Australia, and demonstrating that the capacity from numerical analysis is consistent with the test results. The Hypoplastic soil constitutive model also provides an efficient method to produce accurate load capacity transition curves from an undrained to a drained soil state.


Author(s):  
Yuqi Wu ◽  
Qing Yang ◽  
Dayong Li ◽  
Yu Zhang

Suction caissons supporting offshore wind turbines are exposed to great horizontal loading above the soil surface, which may lead to overturning failure of the caisson. This paper presents a modified three-dimensional failure mechanism to analyze the anti-overturning bearing capacity of suction caissons. The modified failure mechanism is composed of meniscus-conical wedge having meniscus shape at the soil surface and scooped shape. The analytical solution to the anti-overturning bearing capacity of suction caisson is deduced in terms of the limit equilibrium method, following by a parametric study of wedge depth ratio (c) to optimize the critical failure mechanism that satisfies both the force and moment equilibriums. Thus, the methodologies are relatively easy to implement in traditional spreadsheets and the analyses tend to perform very fast. Meanwhile, the effects of gap formation at the rear side of the caisson, loading eccentricity and adhesion factor at caisson-soil interface on anti-overturning bearing capacity are investigated. Comparing with finite element limit analysis results, experimental data and existing theoretical solutions, it is proved that the presented limit equilibrium analysis can satisfactorily predict the anti-overturning bearing capacity of suction caissons with low aspect ratios for offshore wind turbines in uniform and linearly increasing strength clays.


Sign in / Sign up

Export Citation Format

Share Document