Uplift Capacity of Suction Caissons in Sand for General Conditions Of Drainage

2021 ◽  
Author(s):  
Ragini Gogoi ◽  
Charles P. Aubeny ◽  
Phillip Watson ◽  
Fraser Bransby

Abstract Suction caissons have emerged as a viable solution for the foundations of offshore wind turbines, which are gaining momentum worldwide as an alternate energy source. When used in a multi-bucket jacket system, the system capacity is often governed by the uplift capacity of the windward bucket foundation. Seabed conditions at offshore windfarm sites often comprise dense sand where the soil response may be drained, partially drained or undrained depending on the loading regime, the foundation dimensions and the soil conditions. Given the large difference in uplift capacity of caissons for these different drainage conditions, predicting the behavior of a suction caisson under a range of drainage conditions becomes a paramount concern. Consequently, this paper presents the findings of a coupled finite element investigation of the monotonic uplift response of the windward caisson of a multi-bucket jacket system in a typical dense silica sand for a range of drainage conditions. The study adopts a Hypoplastic soil constitutive model capable of simulating the stress-strain-strength behavior of dense sand. This choice is justified by conducting a comparative study with other soil models — namely the Mohr Coulomb and bounding surface sand models — to determine the most efficient soil failure model to capture the complex undrained behavior of dense sand. The numerical predictions made in this study are verified by recreating the test conditions adopted in centrifuge tests previously conducted at the University of Western Australia, and demonstrating that the capacity from numerical analysis is consistent with the test results. The Hypoplastic soil constitutive model also provides an efficient method to produce accurate load capacity transition curves from an undrained to a drained soil state.

Author(s):  
Hocine Haouari ◽  
Ali Bouafia

Centrifuge modelling and finite element analysis are powerful tools of research on the lateral pile/soil interaction. This paper aims at presenting the main results of experimental and numerical analysis of the pile response under monotonic lateral loading in sand. After description of the experimental devices, it focuses on the determination of the load-transfer P-Y curves for rigid and semi-rigid piles embedded in dry dense sand by using the experimental bending moment profiles obtained in centrifuge tests, as well as by a three-dimensional finite element models using ABAQUS Software. The elastic perfectly plastic Mohr-Coulomb constitutive model has been used to describe the soil response, and the surface-to-surface contact method of ABAQUS software has been used to take into account the nonlinear response at soil/pile interface. The analysis methodology has allowed to propose a hyperbolic function as a model to construct P-Y curves for rigid and semi-rigid piles embedded in dry dense sand, this model is governed by two main parameters, which are the initial subgrade reaction modulus, and the lateral soil resistance, the latter has been formulated in terms of Rankine’s passive earth pressure coefficient, the sand dry unit weight, and the pile diameter.


Author(s):  
Charles P. Aubeny ◽  
Seungwoon Han ◽  
J. Don Murff

Suction caissons used as mooring anchors for offshore structures can, depending on design concept, be subjected to pullout forces ranging from nearly vertical for tension leg platforms, to intermediate inclination angles for taut mooring systems, to nearly horizontal for catenary moored systems. Hence, the ability to understand and predict suction anchor pullout resistance for a full range of load orientations is becoming of increasing importance. A previous paper by the authors presents a plastic limit analysis for estimating the load capacity of suction anchors over a full range of load inclination ranging from horizontal to vertical. The model was capable of predicting load capacity for various load attachment (padeye) depths, caisson aspect ratios, and soil undrained strength profiles that vary linearly with depth. Loading conditions are assumed to be undrained; therefore, a purely cohesive soil is assumed. The original analysis assumed full adhesion on the boundaries of the caisson; i.e., a skin resistance coefficient α equal to unity. However, actual values of this coefficient are less than unity, with specific values varying according to soil conditions and the method of caisson installation. To overcome the limitation of the original model, this paper presents a modified formulation that allows a skin resistance less than unity. The modified formulation develops an interaction relationship between vertical and horizontal soil resistance on the sides of the caisson that is applicable for any skin resistance conditions ranging from no to full adhesion.


Author(s):  
Mohamed I. Ramadan ◽  
Stephen D. Butt ◽  
Radu Popescu

Offshore anchor piles are usually loaded at a padeye on pile surface. The padeye depth can be at the seabed or below it. Using a padeye below the seabed is widely used in case of suction caissons. However, anchor piles are more flexible and the mode of failure will be different from that for suction caissons. In the current parametric study, the effect of padeye depth on the behavior of offshore anchor pile subjected to mooring forces in dense sand was studied. Finite Element Model (FEM) had been established. The model had been calibrated based on the centrifuge tests that were carried out by the authors. Three piles of different soil-pile rigidity covering a wide range of pile flexibility were used in the study. The piles were pulled out at an angle of 15° to horizontal. In all cases the padeye depth was changed from at the ground surface to a depth of four times the pile diameter. From this parametric study, it was found that pulling out an offshore anchor pile at a level below the seabed has some advantages of increasing the ultimate capacity of the pile, decreasing pile deflection, and decreasing bending moment. An optimum depth of padeye was recommended.


2002 ◽  
Vol 39 (3) ◽  
pp. 576-584 ◽  
Author(s):  
Magued Iskander ◽  
Sherif El-Gharbawy ◽  
Roy Olson

The use of suction caissons (suction piles) in marine environments has been increasing in the last decade. A suction caisson is a steel pipe with an open bottom and a closed top that is inserted into the ground by pumping water out of it. Pumping creates a differential pressure across the caisson's top that pushes it into place, thus eliminating the need for pile driving. There are a number of uncertainties in the design of suction caissons. First, the state of stress and soil conditions adjacent to a suction caisson differs from those around typical driven piles or drilled shafts. Second, the axial load capacity of suction caissons depends on the rate of loading, hydraulic conductivity, drainage length, as well as the shearing strength properties of the foundation material. Finally, during pullout, volume change characteristics of the surrounding soils may change the theoretical suction pressures. A review of the existing knowledge relating to the design and construction of suction caissons is presented in this paper along with the results of a laboratory study on model caissons in sand and clay. Test results indicate that the use of suction pressure for installation of caissons is a viable alternative to conventional methods. Suction was also shown to resist some axial tensile loads.Key words: suction, pile, bucket, foundation, anchor, capacity.


2021 ◽  
Author(s):  
Mohamed A. Sakr ◽  
Waseim R. Azzam ◽  
Hatem K. Kassim

Abstract In this experimental work, the influence of pile cross-section with varied configurations on the axial compression load capacity of a single pile and related settlement in sand are investigated. The influence of relative sand density (Dr), the pile length to diameter (L/D) ratios and the pile installation techniques are presented. A testing program comprising seven model steel piles with varied shapes of 20 mm width/diameter was conducted. The tests are performed on model piles with the pile length to diameter ratios of 10 and 30 installed in the three cases of sand modeling as loose, medium dense and dense sand. Results indicated that, the rectangular pile is the optimization cross-sectional under the same pile geometry and soil conditions. Also, the increase of the relative sand density has a significant influence on the ultimate compression pile load. Furthermore, the ultimate axial loads of flexible piles in the case of loose sand using the non-displacement method were found to be increased by 119%, 114%, 143%, 82% 139%, 89% and 100% comparing with the ultimate axial loads of rigid piles for the seven models of closed-ended pipe, open-ended pipe, conical base pipe, square closed-ended, square open-ended, tapered and rectangular piles respectively. While, these percentages were found to be increased by (49%, 37%, 26%, 78%, 35%, 71% and 91%) and (77%, 50%, 13%, 116%, 61%, 89% and 85%) in the cases of medium dense and dense sand respectively. The results also indicated that, piles installed in sand using jacking technique have more resistance compared with piles installed in sand using non-displacement technique.


1990 ◽  
Vol 27 (5) ◽  
pp. 546-556 ◽  
Author(s):  
E. A. Dickin ◽  
C. F. Leung

The influence of embedment, base diameter, and backfill density on the uplift behaviour of piles with enlarged bases embedded in sand was investigated in a centrifuge. Comparitive tests on straight-shafted piles are also reported. For piles in dense sand, sensible agreement was found with earlier research on anchor plates and published field data. However, uplift capacities in loose sand were considerably lower than previously observed for anchor plates. A number of theories for anchors considerably overpredict the observed capacity for belled piers in both dense and loose sand, although in the case of dense sand, reasonable values are obtained using an empirical equation derived from centrifuge tests on anchor plates and a finite element based design approach. The normally conservative vertical slip-surface model is alone in providing reasonable agreement with the surprisingly low observations for piles in loose sand. Key words: piles, uplift capacity, centrifuge tests, sand.


2002 ◽  
Vol 124 (2) ◽  
pp. 416-419 ◽  
Author(s):  
A. M. Goijaerts ◽  
L. E. Govaert ◽  
F. P. T. Baaijens

In a previous work a numerical tool was presented which accurately predicted both process force and fracture initiation for blanking of a ferritic stainless steel in various blanking geometries. This approach was based on the finite element method, employing a rate-independent elasto-plastic constitutive model combined with a fracture criterion which accounts for the complete loading history. In the present investigation this work is extended with respect to rate-dependence by employing an elasto-viscoplastic constitutive model in combination with the previously postulated fracture criterion for ferritic stainless steel. Numerical predictions are compared to experimental data over a large range of process speeds. The rate-dependence of the process force is significant and accurately captured by the numerical simulations at speeds ranging from 0.001 to 10 mm/s. Both experiments and numerical simulations show no influence of punch velocity on fracture initiation.


Author(s):  
Qiuyi Shen ◽  
Zhenghao Zhu ◽  
Yi Liu

A three-dimensional finite element model for scarf-repaired composite laminate was established on continuum damage model to predict the load capacity under tensile loading. The mixed-mode cohesive zone model was adopted to the debonding behavior analysis of adhesive. Damage condition and failure of laminates and adhesive were subsequently addressed. A three-dimensional bilinear constitutive model was developed for composite materials based on damage mechanics and applied to damage evolution and loading capacity analyses by quantifying damage level through damage state variables. The numerical analyses were implemented with ABAQUS finite element analysis by coding the constitutive model into material subroutine VUMAT. Good agreement between the numerical and experimental results shows the accuracy and adaptability of the model.


2019 ◽  
Vol 92 ◽  
pp. 16005
Author(s):  
Hansini Mallikarachchi ◽  
Kenichi Soga

When saturated granular materials which are dilative in nature are subjected to the undrained deformation, their strength increases due to the generation of negative excess pore pressure. This phenomenon is known as dilative hardening and can be witnessed in saturated dense sand or rocks during very fast loading. However, experimental evidence of undrained biaxial compression tests of dense sand shows a limit to this dilative hardening due to the formation of shear bands. There is no consensus in the literature about the mechanism which triggers these shear bands in the dense dilative sand under isochoric constraint. The possible theoretical reasoning is the local drainage inside the specimen under the globally undrained condition, which is challenging to be monitored experimentally. Hence, both incept of localisation and post-bifurcation of the saturated undrained dense sand demand further numerical investigation. Pathological mesh dependency hinders the ability of the finite element method to represent the localisation without advanced regularisation methods. This paper attempt to provide a macroscopic constitutive behaviour of the undrained deformation of the saturated dense sand in the presence of a locally drained shear band. Discontinuation of dilatant hardening due to partial drainage between the shear band and the adjacent material is integrated into the constitutive model without changing governing equilibrium equations. Initially, a classical bifurcation analysis is conducted to detect the inception and inclination of the shear band based on the underlying drained deformation. Then a post-bifurcation analysis is carried out assuming an embedded drained or partially drained shear band at gauss points which satisfy bifurcation criterion. The smeared shear band approach is utilised to homogenise the constitutive relationship. It is observed that the dilatant hardening in the saturated undrained dense sand is reduced considerably due to the formation of shear bands.


2020 ◽  
Vol 57 (7) ◽  
pp. 974-991 ◽  
Author(s):  
Xuan Mei ◽  
Scott M. Olson ◽  
Youssef M.A. Hashash

Pore-water pressure (PWP) generation can lead to soil softening and liquefaction of sandy soils during earthquakes, with potential influence on site response and seismic design. The authors evaluated the generalized quadratic/hyperbolic (GQ/H) constitutive model, which captures small-strain stiffness, large-strain shear strength, and is coupled with a widely used cyclic strain–based PWP generation model (termed GQ/H+u). A suite of cyclic direct simple shear tests with a range of relative densities (∼30%–80%) and effective vertical stresses (∼25–200 kPa) and dynamic centrifuge tests with liquefiable sands were used to evaluate the ability of the GQ/H+u model to simulate cyclic soil behavior. Results indicate that GQ/H+u provides reasonable estimates of PWP increase during cyclic shear, with differences between measured and computed excess PWP ratios (ru) for both element and centrifuge tests generally smaller than 0.1. Computed spectral accelerations are comparable to centrifuge test measurements, with almost no bias at medium to long periods (T > 0.4 s) when the computed maximum shear strain (γmax) was smaller than the limit shear strain (γlimit). When computed ru > 0.8 and computed γmax > γlimit, spectral accelerations may be underestimated at both short and long periods as dilative behavior is not captured by GQ/H+u.


Sign in / Sign up

Export Citation Format

Share Document