Mechanistic Corrections for Determining the Resilient Modulus of Base Course Materials Based on Elastic Wave Measurements

2010 ◽  
Vol 136 (8) ◽  
pp. 1086-1094 ◽  
Author(s):  
C. C. Schuettpelz ◽  
D. Fratta ◽  
T. B. Edil
2016 ◽  
Vol 143 ◽  
pp. 828-835 ◽  
Author(s):  
Shinichiro Kawabata ◽  
Tatsuya Ishikawa ◽  
Shuichi Kameyama

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Kevin Gaspard ◽  
Zhongjie Zhang ◽  
Gavin Gautreau ◽  
Khalil Hanifa ◽  
Claudia E. Zapata ◽  
...  

LTRC is conducting a research project to determine the seasonal variation of subgrade resilient modulus (MR) in an effort to implement PavementME. One objective of that project, which is presented in this paper, was to locally calibrate the Enhanced Integrated Climate Model’s (EICM Fenv) curve for seasonal subgrade MR changes. Shelby tube sampling was conducted on six different roadways to a depth of approximately 7.92 m beneath the shoulder pavement’s base course. The AASHTO T-99 MR test method was used on all samples with an additional eight specimens being tested with NCHRP 1–28A MR test method. Four soils from Louisiana which were not from the six roadways were also tested and included in the analyses. Once the MR tests were completed and plotted, it was noticed that there was a rather large scatter (R2 = −0.266) around the EICM Fenv curve. The authors hypothesized that this occurred due to the density differences between in situ and remolded specimens. Further analyses confirmed this hypothesis. LTRC developed a new method based on the EICM Fenv method to determine the relationship between changes in subgrade MR as a function of changes in moisture content with the in situ moisture content and MR used as the control. This method differs from the EICM Fenv in that the EICM Fenv uses optimum moisture content as the controlling parameter. The LTRC method can be used for design purposes as well as level 2 inputs into the EICM.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 201 ◽  
Author(s):  
Seong-Hoon Kee ◽  
Jin-Wook Lee ◽  
Ma. Doreen Candelaria

The main objectives of this study are to develop a non-destructive test method for evaluating delamination defects in concrete by the Impact-echo test using multi-channel elastic wave data and to verify the validity of the proposed method by experimental studies in the laboratory. First, prototype equipment using an eight-channel linear sensor array was developed to perform elastic wave measurements on the surface of the concrete. In this study, three concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)), with simulated delamination defects of various lateral dimensions and depth, were designed and constructed in the laboratory. Multi-channel elastic wave signals measured on the three concrete specimens were converted to the frequency-phase velocity image by using the phase-shift method. A data processing method was proposed to extract the dominant propagating waves and non-propagating waves from the dispersion images. The dominant wave modes were used to evaluate delamination defects in concrete. It was demonstrated that the surface wave velocity values were useful for characterizing the shallow delamination defects in concrete. In addition, the peak frequency of non-propagating wave modes extracted from the dispersion images gives information on the lateral dimensions and depths of the delamination defects. This study also discussed the feasibility of combined use of the results from propagating and non-propagating wave modes to better understand the information on delamination defects in concrete. As will be discussed, the multi-channel elastic wave measurements enable more accurate, consistent, and rapid measurements and data processing for evaluation of delamination defects in concrete than the single-channel sensing method.


2019 ◽  
Vol 21 (7) ◽  
pp. 1955-1967
Author(s):  
Arash Bozorgi ◽  
Andrew Fried ◽  
Brina M. Montoya ◽  
Cassie Castorena

Sign in / Sign up

Export Citation Format

Share Document