Effects of Mobilized Wall Friction Angle on Resultant Seismic Earth Pressure on Shallow Foundation

2019 ◽  
Vol 145 (10) ◽  
pp. 04019062
Author(s):  
Shuji Tamura ◽  
Ryota Kawakami ◽  
Takehiro Okumura
2012 ◽  
Vol 3 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Sima Ghosh

Knowledge of passive resistance is extremely important and it is the basic data required for the design of geotechnical structures like the retaining wall moving towards the backfill, the foundations, the anchors etc. An attempt is made to develop a formulation for the evolution of seismic passive resistance of a retaining wall supporting c-F backfill using pseudo-static method. Considering a planar rupture surface, the formulation is developed in such a way so that a single critical wedge surface is generated. The variation of seismic passive earth pressure coefficient are studied for wide range of variation of parameters like angle of internal friction, angle of wall friction, cohesion, adhesion, surcharge, unit weight of the backfill material, height and seismic coefficients.


2006 ◽  
Vol 43 (5) ◽  
pp. 540-549 ◽  
Author(s):  
Deepankar Choudhury ◽  
Shailesh Singh ◽  
Shubhra Goel

Free-standing cantilever sheet pile walls in cohesionless soils subjected to horizontal line load have traditionally been analyzed assuming full active and passive earth pressure mobilization on the sides of the embedded portion of the wall. In the conventional analysis, the vertical equilibrium of forces is not checked and the effect of the wall friction angle is neglected because of the assumption of a smooth wall. In the present study, the limit equilibrium method has been used to estimate the minimum penetration depth required for a free-standing cantilever sheet pile wall subjected to horizontal line load, by considering the effect of wall friction angle, thereby satisfying all equilibrium conditions and considering the partial mobilization of earth pressures depending on the type and magnitude of the wall movement. The variation of earth pressure mobilization has been taken as a function of the displacement (rotation about both the top and the bottom) of the cantilever sheet pile wall, which in turn also governs the mobilized friction angles. A comparison has been made between the results of penetration depths obtained by the present study and those obtained by existing conventional solutions. New design values in nondimensional form are proposed.Key words: wall friction angle, partial earth pressure mobilization, cohesionless soil, penetration depth, equilibrium equations, displacement.


2002 ◽  
Vol 39 (4) ◽  
pp. 971-981 ◽  
Author(s):  
Deepankar Choudhury ◽  
K S. Subba Rao

In the presence of pseudo-static seismic forces, passive earth pressure coefficients behind retaining walls were generated using the limit equilibrium method of analysis for the negative wall friction angle case (i.e., the wall moves upwards relative to the backfill) with logarithmic spirals as rupture surfaces. Individual density, surcharge, and cohesion components were computed to obtain the total minimum seismic passive resistance in soils by adding together the individual minimum components. The effect of variation in wall batter angle, ground slope, wall friction angle, soil friction angle, and horizontal and vertical seismic accelerations on seismic passive earth pressures are considered in the analysis. The seismic passive earth pressure coefficients are found to be highly sensitive to the seismic acceleration coefficients both in the horizontal and the vertical directions. The results are presented in graphical and tabular formats.Key words: seismic passive resistance, limit equilibrium, pseudo-static.


2021 ◽  
Vol 13 (1) ◽  
pp. 570-581
Author(s):  
Meriem F. Bouali ◽  
Mahdi O. Karkush ◽  
Mounir Bouassida

Abstract The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and full-scale retaining walls. It is observed that the PEP varies linearly with depth for the horizontal translation, but it is nonlinear when the movement is rotational about the top of the retaining wall. When rotation is around the top of the wall, the resultant of PEP is located at a depth that varies between 0.164 and 0.259H of the wall height measured from the base of the wall, which is lesser than 1/3 of the wall height. The passive earth thrust location is highly affected by the soil–wall friction angle, especially when the friction angle of the backfill material increases. Despite the herein presented results, further experiments are recommended to assess the corresponding numerical predictions.


2008 ◽  
Vol 45 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Priyanka Ghosh

This note describes a study on the seismic active earth pressure behind a nonvertical cantilever retaining wall using pseudo-dynamic analysis. A planar failure surface has been considered behind the retaining wall. The effects of soil friction angle, wall inclination, wall friction angle, amplification of vibration, and horizontal and vertical earthquake acceleration on the active earth pressure have been explored in this study. Unlike the Mononobe–Okabe method, which incorporates pseudo-static analysis, the present analysis predicts a nonlinear variation of active earth pressure along the wall. The results have been compared with the existing values in the literature.


Author(s):  
Sima Ghosh

This paper presents a detailed study on the seismic passive earth pressure behind a non-vertical cantilever retaining wall supporting inclined backfill, using pseudo-dynamic method. In addition to the consideration of wall and backfill surface inclination, the soil friction angle, wall friction angle, and both horizontal and vertical seismic coefficients are taken into account. From the obtained results, a non-linear variation of passive earth pressure along the height of the wall is observed. The results compare well with the existing values in research.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Hong-zhi Qiu ◽  
Ji-ming Kong ◽  
Ren-chao Wang

The pile-anchor supporting structure is widely used in foundation pit engineering; then knowledge of active earth pressure on piles is very important for engineers. In this paper, based on the pseudodynamic method and considering the vehicle’s vibration characteristic, a method to calculate the earth pressure on piles under vehicle load is presented. At the same time, the constraint of anchor is simplified relation of lateral deformation of piles in present method. Effects of a wide range of parameters like rupture angle, vibration acceleration coefficient, wall friction angle, and soil friction angle on active earth pressure have been studied. Results are presented in terms of coefficients in the figures and comparison of the test data and the earth pressure calculated by M-O method and present study. The result shows that the measured earth pressure is accordant with the theoretical analysis, so the method in this paper is an effective basis for the calculation of earth pressure on piles under vehicle loads.


2021 ◽  
Vol 12 (1) ◽  
pp. 169
Author(s):  
Hui Liu ◽  
Dezhi Kong ◽  
Wensong Gan ◽  
Bingjie Wang

The traditional method for seismic earth pressure calculation has certain limitations for retaining structures under complex conditions. For example, when the soil width is small, the results obtained by the traditional method will be much larger. Therefore, this paper assumes that the soil slip surface is a logarithmic spiral. Based on the plane strain unified strength theory formula, while also considering the soil arching effects and tension cracks, the analytical solutions of the lateral earth pressure coefficient and the active earth pressure under the earthquake action were deduced. The mechanism and distribution of seismic active earth pressure with limited width were discussed in terms of some relevant parameters. The results indicated that the seismic active earth pressure presented a “convex” nonlinear distribution along the retaining structure. As the contribution of the intermediate principal stress increased, the strength limit of the material was effectively utilized, and the earth pressure was reduced by 22.96%. The resultant force increased as the horizontal seismic coefficient increased. However, this effect was no longer evident when the wall–soil friction angle was close to the internal friction angle. The resultant force action point increased with the wall–soil friction angle, and it should be noted that ha>H/3 was true when δ/φ0>0.55. Finally, by drawing a comparison with previous studies, we verified that the method proposed in this paper is reasonable and can provide a new idea for subsequent 3D seismic earth pressure research.


Author(s):  
Kenichi SUZUKI ◽  
Hirofumi IKEMOTO ◽  
Taisuke SANAGAWA ◽  
Keita ABE ◽  
Hideaki TAKASAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document