Effect of Pressure Gradient on Critical Shear Stress of Cohesive Soils

2020 ◽  
Vol 146 (6) ◽  
pp. 04020042
Author(s):  
Hicham “Sam” Salem ◽  
Colin D. Rennie
2021 ◽  
Vol 64 (2) ◽  
pp. 587-600
Author(s):  
Xiaojing Gao ◽  
Qiusheng Wang ◽  
Chongbang Xu ◽  
Ruilin Su

HighlightsErosion tests were performed to study the critical shear stress of cohesive soils and soil mixtures.Linear relationships were observed between critical shear stress and cohesion of cohesive soils.Mixture critical shear stress relates to noncohesive particle size and cohesive soil erodibility.A formula for calculating the critical shear stress of soil mixtures is proposed and verified.Abstract. The incipient motion of soil is an important engineering property that impacts reservoir sedimentation, stable channel design, river bed degradation, and dam breach. Due to numerous factors influencing the erodibility parameters, the study of critical shear stress (tc) of cohesive soils and soil mixtures is still far from mature. In this study, erosion experiments were conducted to investigate the influence of soil properties on the tc of remolded cohesive soils and cohesive and noncohesive soil mixtures with mud contents varying from 0% to 100% using an erosion function apparatus (EFA). For cohesive soils, direct linear relationships were observed between tc and cohesion (c). The critical shear stress for soil mixture (tcm) erosion increased monotonically with an increase in mud content (pm). The median diameter of noncohesive soil (Ds), the void ratio (e), and the organic content of cohesive soil also influenced tcm. A formula for calculating tcm considering the effect of pm and the tc of noncohesive soil and pure mud was developed. The proposed formula was validated using experimental data from the present and previous research, and it can reproduce the variation of tcm for reconstituted soil mixtures. To use the proposed formula to predict the tcm for artificial engineering problems, experimental erosion tests should be performed. Future research should further test the proposed formula based on additional experimental data. Keywords: Cohesive and noncohesive soil mixture, Critical shear stress, Erodibility, Mud content, Soil property.


2017 ◽  
Vol 143 (10) ◽  
pp. 04017045 ◽  
Author(s):  
Hicham (Sam) Salem ◽  
Colin D. Rennie

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3621
Author(s):  
Qiusheng Wang ◽  
Pengzhan Zhou ◽  
Junjie Fan ◽  
Songnan Qiu

The erosion rate of cohesive soils was typically modeled with the excess shear stress model and the Wilson model. Several kinds of research have been conducted to determine the erodibility parameters of the two models, but few attempts have been made hitherto to investigate the general trends and range of the erodibility parameter values obtained by the commonly used Erosion Function apparatus. This paper collected a database of 177 erosion function apparatus tests to indicate the variability of all erodibility parameters; the range of erodibility parameters is determined by data statistics and parameter theoretical value derivation. The critical shear stress (τc) and erodibility coefficient (Z0) in the over-shear stress model have a positive proportional relationship when the data samples are sufficient. However, there is no such relationship between the erodibility coefficient (b0) and erodibility coefficient (b1) in the Wilson model. It is necessary to express the soil erosion resistance by considering all erosion parameters in the erosion model. Equations relating erodibility parameters to water content, plasticity index, and median particle size were developed by regression analysis.


2007 ◽  
Vol 34 (9) ◽  
pp. 1192-1195 ◽  
Author(s):  
Daniel Shugar ◽  
Ray Kostaschuk ◽  
Peter Ashmore ◽  
Joe Desloges ◽  
Leif Burge

Fletcher’s Creek is located in an urbanizing basin near Toronto and has a bed and banks composed primarily of cohesive Halton Till. Critical shear stress and an erodibility coefficient for the till were determined using an in situ jet-tester that directs a submerged jet of water perpendicular to the sediment surface. The results from 10 jet-tests indicate that the till has a relatively low critical shear stress and relatively high erodibility coefficient and could be susceptible to bed scour during flood events. Many other streams in southern Ontario have urbanizing watersheds with cohesive till beds that may also be susceptible to erosion.Key words: critical stress, submerged jet, erodibility, cohesive soils.


Author(s):  
Reza Rahimnejad ◽  
Phillip S. K. Ooi

The scour rate found by the cohesive soil-erosion function apparatus (SRICOS-EFA) method provides more accurate and realistic scour predictions than the Richardson and Davis equation, which tends to overpredict scour, especially in cohesive soils. Scour of cohesive soil occurs more slowly than scour of cohesionless soils. The time-dependent nature of scour of cohesive soils can be understood by considering both the variation of flood intensity over time and the scour characteristics of the soil, with an erosion rate curve obtained with an erosion function apparatus (EFA). One drawback of the SRICOS-EFA method is that the EFA requires a significant cost outlay. A model for the erosion rate curve is proposed on the basis of EFA tests conducted on 31 undisturbed fine-grained soils from five water channels on the island of Oahu, Hawaii. A hyperbolic regression model was developed with four explanatory variables: water content, liquid limit, plasticity index, and activity, which are easily measured in the laboratory. Parameter estimates for the model were then obtained using nonlinear ordinary least squares. A key element of the model is that the parameter estimates logically affect the sign and magnitude of critical shear stress, in accord with observed soil behavior—that is, it was found that the model captured the effects of water content and plasticity index on the critical shear stress quite effectively. Also, the model provided reasonable estimates of the 31 erosion rate curves. Use of this model in the SRICOS-EFA method to estimate scour depth can result in less scour and can result in significant bridge cost savings.


Sign in / Sign up

Export Citation Format

Share Document