In situ jet-testing of the erosional resistance of cohesive streambeds

2007 ◽  
Vol 34 (9) ◽  
pp. 1192-1195 ◽  
Author(s):  
Daniel Shugar ◽  
Ray Kostaschuk ◽  
Peter Ashmore ◽  
Joe Desloges ◽  
Leif Burge

Fletcher’s Creek is located in an urbanizing basin near Toronto and has a bed and banks composed primarily of cohesive Halton Till. Critical shear stress and an erodibility coefficient for the till were determined using an in situ jet-tester that directs a submerged jet of water perpendicular to the sediment surface. The results from 10 jet-tests indicate that the till has a relatively low critical shear stress and relatively high erodibility coefficient and could be susceptible to bed scour during flood events. Many other streams in southern Ontario have urbanizing watersheds with cohesive till beds that may also be susceptible to erosion.Key words: critical stress, submerged jet, erodibility, cohesive soils.

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3621
Author(s):  
Qiusheng Wang ◽  
Pengzhan Zhou ◽  
Junjie Fan ◽  
Songnan Qiu

The erosion rate of cohesive soils was typically modeled with the excess shear stress model and the Wilson model. Several kinds of research have been conducted to determine the erodibility parameters of the two models, but few attempts have been made hitherto to investigate the general trends and range of the erodibility parameter values obtained by the commonly used Erosion Function apparatus. This paper collected a database of 177 erosion function apparatus tests to indicate the variability of all erodibility parameters; the range of erodibility parameters is determined by data statistics and parameter theoretical value derivation. The critical shear stress (τc) and erodibility coefficient (Z0) in the over-shear stress model have a positive proportional relationship when the data samples are sufficient. However, there is no such relationship between the erodibility coefficient (b0) and erodibility coefficient (b1) in the Wilson model. It is necessary to express the soil erosion resistance by considering all erosion parameters in the erosion model. Equations relating erodibility parameters to water content, plasticity index, and median particle size were developed by regression analysis.


2021 ◽  
Vol 64 (3) ◽  
pp. 785-799
Author(s):  
Tony L. Wahl

HighlightsFifty-two jet erosion tests performed on four cohesive soils were analyzed by nine different methods.Nonlinear methods performed well on some individual tests but fit inconsistently overall.Several alternate linear solution methods outperformed the widely used Blaisdell method.Simple linear regression of erosion rate versus applied shear stress provided the most consistent relationship between erosion rate and critical shear stress parameters.Abstract. The submerged jet erosion test (JET) is widely used in lab and field settings to quantify erodibility of cohesive soils and determine erosion rate coefficients and critical shear stress values. Test devices with different scales and configurations have been developed in recent years, along with several alternative methods for processing the collected data to determine parameters of linear and nonlinear soil erosion equations. To facilitate standardization, 52 JET experiments were conducted on four different cohesive soils compacted at optimum water content and 2% dry and wet of optimum. Each test was analyzed using nine different methods, four based on the linear excess stress equation (including the commonly used Blaisdell method) and five based on nonlinear erosion equations, including two using the recently popular Wilson model. Results were analyzed to determine the erosion equations and parameter-fitting methods that most effectively represent the observed erosion rates and are of greatest utility for soil erosion modeling and the ranking and classification of soils according to erodibility. Methods based on nonlinear erosion equations fit some data sets well, but they exhibited poor correlation between the erosion rate coefficient and the threshold shear stress parameter for initiating erosion, which is problematic for soil erodibility classification work. Linear methods that simultaneously optimized erosion equation parameters to best fit the total depth of scour or the elapsed time needed to reach specific depths of scour performed better than the Blaisdell method, which has been the informally accepted standard of practice since the late 1990s. However, they also exhibited weak correlation of the erosion rate and critical shear stress parameters. Simple linear regression of average scour rate versus average applied stress provided an effective method for representing the erosion rate versus applied stress curve and exhibited the strongest correlation of the erosion rate coefficient and critical shear stress parameters. Keywords: Cohesive soil, Critical shear stress, Erodibility, Erosion, Erosion laws, Erosion models, Jet erosion test, Shear strss, Soil moisture.


2011 ◽  
Vol 14 (2) ◽  
pp. 5-15
Author(s):  
Vinh Trong Bui ◽  
Deguchi Ichiro

The aim of this study is to investigate effect of sand-silt-clay content, moisture content, salinity, consolidation, and vegetation density on critical shear stress (tc) of cohesive bank materials for erosion processes of rivers and coastal regions. The authors used the non-vertical submerged jet test apparatus designed by Hanson et al. (2002) and reproduced by Deguchi et al. (2007) to carry out both laboratory and in situ measurements. The laboratory experimental results showed that the tc increased as the rate of clay content, salinity, consolidation, and vegetation density increased. The t c decreased as the moisture content increased. The in situ experimental results of five severely eroded sites of the Soai Rap river banks, southern Hochiminh City were similar to thoses of laboratory experiments. The erodibility (kd) of cohesive bank material can also be determined when the t c is measured.


2021 ◽  
Vol 64 (2) ◽  
pp. 587-600
Author(s):  
Xiaojing Gao ◽  
Qiusheng Wang ◽  
Chongbang Xu ◽  
Ruilin Su

HighlightsErosion tests were performed to study the critical shear stress of cohesive soils and soil mixtures.Linear relationships were observed between critical shear stress and cohesion of cohesive soils.Mixture critical shear stress relates to noncohesive particle size and cohesive soil erodibility.A formula for calculating the critical shear stress of soil mixtures is proposed and verified.Abstract. The incipient motion of soil is an important engineering property that impacts reservoir sedimentation, stable channel design, river bed degradation, and dam breach. Due to numerous factors influencing the erodibility parameters, the study of critical shear stress (tc) of cohesive soils and soil mixtures is still far from mature. In this study, erosion experiments were conducted to investigate the influence of soil properties on the tc of remolded cohesive soils and cohesive and noncohesive soil mixtures with mud contents varying from 0% to 100% using an erosion function apparatus (EFA). For cohesive soils, direct linear relationships were observed between tc and cohesion (c). The critical shear stress for soil mixture (tcm) erosion increased monotonically with an increase in mud content (pm). The median diameter of noncohesive soil (Ds), the void ratio (e), and the organic content of cohesive soil also influenced tcm. A formula for calculating tcm considering the effect of pm and the tc of noncohesive soil and pure mud was developed. The proposed formula was validated using experimental data from the present and previous research, and it can reproduce the variation of tcm for reconstituted soil mixtures. To use the proposed formula to predict the tcm for artificial engineering problems, experimental erosion tests should be performed. Future research should further test the proposed formula based on additional experimental data. Keywords: Cohesive and noncohesive soil mixture, Critical shear stress, Erodibility, Mud content, Soil property.


2017 ◽  
Vol 143 (10) ◽  
pp. 04017045 ◽  
Author(s):  
Hicham (Sam) Salem ◽  
Colin D. Rennie

Sign in / Sign up

Export Citation Format

Share Document