Effect of Salt-Frost Cycles on Mechanical Properties and Uniaxial Compression Stress–Strain Curve of Recycled Coarse Aggregate Concrete

2020 ◽  
Vol 32 (2) ◽  
pp. 04019355 ◽  
Author(s):  
Jia Hu ◽  
Jin Wu ◽  
Tianbao Cao
2013 ◽  
Vol 671-674 ◽  
pp. 1736-1740
Author(s):  
Xue Yong Zhao ◽  
Mei Ling Duan

The complete stress-strain curves of recycled aggregate concrete with different recycled coarse aggregate replacement percentages were tested and investigated. An analysis was made of the influence of varying recycled coarse aggregate contents on the complete stress-strain curve, peak stress, peak strain and elastic modulus etc. The elastic modulus of RC is lower than natural concrete (NC), and with the recycled coarse aggregate contents increase, it reduces. While with the increase of water-cement ratio (W/C), recycled concrete compressive strength and elastic modulus improve significantly. In addition, put forward a new equation on the relationship between Ec and fcu of the RC.


2013 ◽  
Vol 734-737 ◽  
pp. 746-750
Author(s):  
Jun Wei Shi

According to the mechanical properties of paste filling body under special environment such as high temperature high humidity high stress and high airtight) in gob, mechanical properties of gangue-paste filling body was studied with the method of field core and laboratory test. The complete stress-strain curve of filling body under the condition of uniaxial and triaxial and the ultimate compressive strength under different confining pressure station were obtained through uniaxial and triaxial compression test. Six stages of uniaxial compression complete stress-strain curve (compression stage, elastic deformation stage, non-stable developing stages, plastic hardening stage, stress softening stage and residual deformation stage) were improved and developed. The deformation characteristics of filling body under triaxial compression were different from that under uniaxial compression. Namely the deformation of filling body under triaxial compression only appeared two deformation stages: linear deformation stage and plastic hardening stage, but had no softening stage basically under different confining pressures, which was benefit for controlling the ground subsidence and preventing the ground buildings.


2013 ◽  
Vol 357-360 ◽  
pp. 1415-1419 ◽  
Author(s):  
Zhi Heng Deng ◽  
Li Chen ◽  
Jian Qian ◽  
Chao Lou Meng

In order to study the mechanical properties of recycled concrete with the same strength, three kinds of recycled concrete have been made which their intensities reached C25, C30, C35 at the recycled coarse aggregate replacement ratios (0%, 50%, 100%), and severally completed the stress-strain curve test on the same strength of recycled concrete, separately analyzed the variance about failure pattern and peak strain, elastic modulus that all belonged to recycled concrete under the condition of the same strength. Studies have shown that the overall shape of recycled concretes stress-strain curves is similar to normal concretes under the same strength, and the difference is small, modulus of elasticity decreases with the increase of recycled coarse aggregate replacement ratio, while the peak strain basicly remains unchanged. Their curves can be used two stages respectively and also be represented by three fitting polynomial and rational expression, their descent stages steepened gradually with the increase of recycled coarse aggregate replacement rate.


2021 ◽  
Vol 15 (1) ◽  
pp. 45-50
Author(s):  
Bobby Asukmajaya R. ◽  
◽  
Edhi Wahjuni S. ◽  
Wisnumurti Wisnumurti ◽  
◽  
...  

Normal aggregate replacement to the onyx waste aggregate will certainly make the compressive strength and modulus of elasticity different, so it will affect the value of the compressive stress block equivalent (β1) as a result of the extent of the changing stress strain curve. In this study, trying to compare between the experimental β1 value of onyx concrete, while analytically the β1 value for normal concrete was obtained in accordance with SNI 2847 - 2019. To get the experimental β1 value from onyx concrete, it is made by looking for the compressive strength, elastic modulus and ꜫ0, for later the stress strain curve of the concrete is made to find the experimental β1 value of the onyx concrete. The results were obtained if the average β1 value of 18 specimens of onyx coarse aggregate concrete with an average compressive strength of 32.92 MPa was 0.868 while the analytical β1 value based on SNI 2847-2019 was 0.839, This shows that the B1 value for concrete with other aggregates is different, so it needs to be checked experimentally.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Xiao Ma ◽  
Qiuhua Rao

High-performance lightweight aggregate concrete with inorganic polymers cement based on multiple minerals is a very promising new material. The research of mechanical properties of the new material is of great theoretical and practical significance. In this research, the failure behavior, cubic and prism compressive strength, elastic modulus, peak strain of the new material, and the nature of the stress-strain curve are studied. An analytical model is quoted to represent the ascending and descending parts of the stress-strain curve.


2011 ◽  
Vol 477 ◽  
pp. 280-289 ◽  
Author(s):  
Shao Wei Yao ◽  
Zhen Guo Gao ◽  
Chang Rui Wang

The properties of recycled coarse aggregate and the slump, the physical and mechanical properties and durability of recycled aggregate concrete were studied through tests. The results indicate that the slump, compressive strength and durability of concrete with recycled aggregate are lower than that of concrete with natural aggregate when recycled coarse aggregate fully absorbs water. However, the slump can be similar to that of concrete with natural aggregate. The properties of recycled aggregate concrete can be improved by strengthening the recycled coarse aggregate, and it is also found that the recycled coarse aggregate strengthened by grinding is superior to that soaked by chemical solution.


2020 ◽  
pp. 1-17
Author(s):  
W.-c. Xie ◽  
X.-l. Wang ◽  
D.-p. Duan ◽  
J.-w. Tang ◽  
Y. Wei

ABSTRACT Stratospheric airships are promising aircraft, usually designed as a non-rigid airship. As an essential part of the non-rigid airship, the envelope plays a significant role in maintaining its shape and bearing the external force load. Generally, the envelope material of a flexible airship consists of plain-weave fabric, composed of warp and weft fibre yarn. At present, biaxial tensile experiments are the primary method used to study the stress–strain characteristics of such flexible airship materials. In this work, biaxial tensile testing of UN-5100 material was carried out. The strain on the material under unusual stress and the stress ratio were obtained using Digital Image Correlation (DIC) technology. Also, the stress–strain curve was corrected by polynomial fitting. The slope of the stress–strain curve at different points, the Membrane Structures Association of Japan (MSAJ) standard and the Radial Basis Function (RBF) model were compared to identify the stress–strain characteristics of the materials. Some conclusions on the mechanical properties of the flexible airship material can be drawn and will play a significant role in the design of such envelopes.


2020 ◽  
Vol 10 (10) ◽  
pp. 3351
Author(s):  
Bo Ke ◽  
Jian Zhang ◽  
Hongwei Deng ◽  
Xiangru Yang

The effect of temperature fluctuation on rocks needs to be considered in many civil engineering applications. Up to date the dynamic characteristics of rock under freeze-thaw cycles are still not quite clearly understood. In this study, the dynamic mechanical properties of sandstone under pre-compression stress and freeze-thaw cycles were investigated. At the same number of freeze-thaw cycles, with increasing axial pre-compression stress, the dynamic Young’s modulus and peak stress first increase and then decrease, whereas the dynamic peak strain first decreases and then increases. At the same pre-compression stress, with increasing number of freeze-thaw cycles, the peak stress decreases while the peak strain increases, and the peak strain and peak stress show an inverse correlation before or after the pre-compression stress reaches the densification load of the static stress–strain curve. The peak stress and strain both increase under the static load near the yielding stage threshold of the static stress–strain curve. The failure mode is mainly shear failure, and with increasing axial pre-compression stress, the degree of shear failure increases, the energy absorption rate of the specimen increases first and then decreases. With increasing number of freeze-thaw cycles, the number of fragments increases and the size diminishes, and the energy absorption rates of the sandstone increase.


Sign in / Sign up

Export Citation Format

Share Document