Preparation of Sludge Ash–Desulfurization Gypsum-Based Backfill Materials Using Microwave Calcination

Author(s):  
Qianming Lu ◽  
Juexiu Li ◽  
Yuanxin Zhang ◽  
Dahua Ren ◽  
Ge Liu ◽  
...  
2009 ◽  
Vol 63 (12) ◽  
pp. 1465-1469 ◽  
Author(s):  
Yukio Tani

2021 ◽  
pp. 127759
Author(s):  
Yifan Zhou ◽  
Jianxin Lu ◽  
Jiangshan Li ◽  
Chris Cheeseman ◽  
Chi Sun Poon

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3863
Author(s):  
Deng-Fong Lin ◽  
Wei-Jhu Wang ◽  
Chia-Wen Chen ◽  
Kuo-Liang Lin

Municipal incinerator bottom ash (MIBA) and sewage sludge ash (SSA) are secondary wastes produced from municipal incinerators. Landfills, disposal at sea, and agricultural use have been the major outlets for these secondary wastes. As global emphasis on sustainability arises, many have called for an increasing reuse of waste materials as valuable resources. In this study, MIBA and SSA were mixed with clay for ceramic tile manufacturing in this study. Raw materials firstly went through TCLP (Toxicity Characteristic Leaching Procedure) to ensure their feasibility for reuse. From scanning electron microscopy (SEM), clay’s smooth surface was contrasted with the porous surface of MIBA and SSA, which led to a higher water requirement for the mixing. Specimens with five MIBA mix percentages of 0%, 5%, 10%, 15%, and 20% (wt) and three SSA mix percentages of 0%, 10%, and 20% (wt) were made to compare how the two waste materials affected the quality of the final product and to what extent. Shrinkage tests showed that MIBA and SSA contributed oppositely to tile shrinkage, as more MIBA reduced tile shrinkage, while more SSA encouraged tile shrinkage. However, as the kiln temperature reached 1150 °C, the SiO2-rich SSA adversely reduced the shrinkage due to the glass phase that formed to expand the tile instead. Both MIBA and SSA increased water tile absorption and reduced its bending strength and wear resistance. Increasing the kiln temperature could effectively improve the water absorption, bending strength, and wear resistance of high MIBA and SSA mixes, as SEM showed a more compact structure at higher temperatures. However, when the temperature reached 1100 °C, more pores appeared and seemingly exhausted the benefit brought by the higher temperature. Complex interactions between kiln temperature and MIBA/SSA mix percentage bring unpredictable performance of tile shrinkage, bending strength, and water absorption, which makes it very challenging to create a sample meeting all the specification requirements. We conclude that a mix with up to 20% of SSA and 5% of MIBA could result in quality tiles meeting the requirements for interior or exterior flooring applications when the kiln temperature is carefully controlled.


2013 ◽  
Vol 67 (9) ◽  
pp. 1101-1105 ◽  
Author(s):  
Christian Vogel ◽  
Christian Adam ◽  
Don McNaughton

2017 ◽  
Vol 63 (No. 10) ◽  
pp. 475-482 ◽  
Author(s):  
Vogel Telse ◽  
Nelles Michael ◽  
Eichler-Löbermann Bettina

In this study, the phosphorus (P) fertilizing effects of struvite, one thermochemical-treated sewage sludge ash (SSA) based on Ca-P (Ca-SSA) and one full sulfuric acid-digested SSA based on Al-P (Al-SSA) were analysed in comparison to triple superphosphate (TSP) and a control treatment (CON) without P application in a two-year field experiment. In the field experiment, the effects of the recycling products on crop yield, P uptake and labile soil P fractions were analysed. In addition, the effect of nitrogen and magnesium contained in struvite was investigated in the second year of the experiment compared to TSP and CON. In the first year, spring barley was cultivated in the field experiment; and in the second year, it was forage rye followed by sorghum. In the second year, the relative P effectiveness (forage rye, sorghum) of the recycling products compared to TSP increased in the order: Ca-SSA (81%, 91%) ≤ Al-SSA (91%, 96%) = struvite (102%, 110%). In addition, an magnesium fertilizing effect of struvite could be demonstrated. The results show that the recycling products from wastewater treatment are appropriate to substitute rock phosphate-based fertilizers.


2012 ◽  
Vol 501 ◽  
pp. 34-38 ◽  
Author(s):  
Kar Keng Lim ◽  
Roslinda Shamsudin ◽  
Muhammad Azmi Abdul Hamid

In this study, paper sludge ash, a waste from pulp and paper industry was used as a filler in fabricating Plaster of Paris/paper sludge ash composites. Various percentage of paper sludge ash was used, namely 1wt.%, 3wt.%, 5wt.% and 7wt.%. The effect of paper sludge ash on the compressive strength of the Plaster of Paris was studied. The mixed powder of paper sludge ash and Plaster of Paris were form into a 6 mm diameter and 12 mm height cylindrical samples. The composites were characterized theirs density where it shows that the density decreased as the amount of paper sludge ash increased. The compressive strength of the composites also decreased from 11.67 MPa without paper sludge ash addition to 0.50 MPa at 7wt.% paper sludge ash. However, the requirement of strength for Plaster of Paris in industry is between 8.96 MPa to 20.68 MPa. From the SEM observation, sample contain higher percentage of paper sludge ash exhibited more porosity. Therefore with the addition of 1wt.% of paper sludge ash into Plaster of Paris can be a promising construction material.


Sign in / Sign up

Export Citation Format

Share Document