Seismic Response of Reinforced-Concrete Masonry Shear-Wall Components and Systems: State of the Art

2017 ◽  
Vol 143 (9) ◽  
pp. 03117001 ◽  
Author(s):  
Wael El-Dakhakhni ◽  
Ahmed Ashour
2012 ◽  
Vol 39 (6) ◽  
pp. 631-642 ◽  
Author(s):  
Natthapong Areemit ◽  
Michael Montgomery ◽  
Constantin Christopoulos ◽  
Agha Hasan

As high-rise buildings increase with height and slenderness, they become increasingly sensitive to dynamic vibrations, and therefore the natural frequency of vibration and damping ratio are very important design parameters, as they directly impact the design wind forces. Recent advances in sensing and computing technology have made it possible to monitor the dynamic behaviour of full-scale structures, which was not possible in the past. Full-scale validation of the dynamic properties is useful for high-rise designers to verify design assumptions, especially since recent measurements have shown that damping decreases as the height of the building increases, and in situ damping measurements have been lower than many currently assumed design values, potentially leading to unconservative designs. A 50-storey residential building in downtown Toronto, with a reinforced concrete coupled shear wall lateral load resisting system with outriggers was monitored using current state-of-the-art sensing technologies and techniques to determine, in situ, the dynamic properties under real wind loads. The in situ measurements were then compared with results obtained using current state-of-the-art computer modelling techniques.


Author(s):  
J. R. Binney ◽  
T. Paulay

After defining design criteria in general for foundations
of earthquake resisting reinforced concrete structures, principles 
are set out which govern the choice of suitable foundation systems
for various types of shear wall structures. The choice of
foundation systems depends on whether the seismic response of the superstructure during the largest expected earthquake is to be elastic or inelastic. For inelastically responding superstructures, preferably the foundation system should be designed to remain elastic. For elastically responding superstructures, suitable foundation systems may be energy dissipating, elastic or of the rocking type. Design criteria for each of these three foundation types are suggested.


Sign in / Sign up

Export Citation Format

Share Document