Investigating Seismic Behavior of Ballasted Railway Track in Earthquake Excitation Using Finite-Element Model in Three-Dimensional Space

2013 ◽  
Vol 139 (7) ◽  
pp. 697-708 ◽  
Author(s):  
Morteza Esmaeili ◽  
Hamidreza Heydari Noghabi
2020 ◽  
Vol 64 (1-4) ◽  
pp. 631-638
Author(s):  
Hucheng Chen ◽  
Wei Han ◽  
Jinhao Qiu

Better understanding of the characteristics of the traveling wave and three-dimensional trajectory related to motion on the surface of the stator is very important for the design and performance improvement of the ultrasonic motors. In this paper, an accurate finite element model of a single stator with a fully coupled piezoelectric layer was established at a moderate computational cost. The finite element model was verified by experimental test at the inverse resonance point. Based on this model, the traveling wave and three-dimensional trajectory of stator surface, including the influence of the input voltage on the phase and amplitude of the displacements in three directions, are investigated. The results show that the trajectory of particles on the stator surface is an ellipse in three-dimensional space due to the phase differences between the three components of displacement in the radial, circumferential and axial directions. The amplitude of radial displacement is about 39.5% of that in the circumferential displacement, which should not be neglected.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Sign in / Sign up

Export Citation Format

Share Document