Assessing the Impact of Climate Change on Environmental Outcomes in the Context of Natural Climate Variability

2018 ◽  
Vol 144 (12) ◽  
pp. 05018016 ◽  
Author(s):  
Jun Wang ◽  
Rory Nathan ◽  
Avril Horne
2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Marcel E. Visser ◽  
Melanie Lindner ◽  
Phillip Gienapp ◽  
Matthew C. Long ◽  
Stephanie Jenouvrier

Climate change has led to phenological shifts in many species, but with large variation in magnitude among species and trophic levels. The poster child example of the resulting phenological mismatches between the phenology of predators and their prey is the great tit ( Parus major ), where this mismatch led to directional selection for earlier seasonal breeding. Natural climate variability can obscure the impacts of climate change over certain periods, weakening phenological mismatching and selection. Here, we show that selection on seasonal timing indeed weakened significantly over the past two decades as increases in late spring temperatures have slowed down. Consequently, there has been no further advancement in the date of peak caterpillar food abundance, while great tit phenology has continued to advance, thereby weakening the phenological mismatch. We thus show that the relationships between temperature, phenologies of prey and predator, and selection on predator phenology are robust, also in times of a slowdown of warming. Using projected temperatures from a large ensemble of climate simulations that take natural climate variability into account, we show that prey phenology is again projected to advance faster than great tit phenology in the coming decades, and therefore that long-term global warming will intensify phenological mismatches.


2017 ◽  
Vol 10 (2) ◽  
pp. 344-359 ◽  
Author(s):  
Jie Yang ◽  
Jianxia Chang ◽  
Jun Yao ◽  
Yimin Wang ◽  
Qiang Huang ◽  
...  

Abstract Studying the impact of climate variability is important for the rational utilization of water resources, especially in the case of intensified global climate variability. Climate variability can be caused by natural climate variability or human-caused climate variability. The analysis of Jinghe River Basin (JRB) may not be comprehensive because few studies have concentrated on natural climate variability. Therefore, the primary goal is to explore the impact of natural climate variability on runoff. A modified Mann–Kendall test method was adopted to analyze the aberrance point to determine the natural condition period during which runoff was only influenced by natural climate variability. Then, the Monte Carlo method was employed to extract segments of monthly runoff in the natural condition period and combine them to construct a long series to reduce the instability. Results indicate that the percentage of runoff variability affected by natural climate variability is 30.52% at a confidence level of 95%. Next, a topography-based hydrological model and climate elasticity method were used to simulate runoff after the aberrance point without considering the impact caused by local interference. Through a comparison of the measured and simulated runoff, we discovered that local interference has the greatest impact on runoff in the JRB.


2018 ◽  
Vol 19 (1) ◽  
pp. 27-46 ◽  
Author(s):  
Magali Troin ◽  
Richard Arsenault ◽  
Jean-Luc Martel ◽  
François Brissette

Abstract Projected climate change effects on hydrology are investigated for the 2041–60 horizon under the A2 emission scenarios using a multimodel approach over two snowmelt-dominated catchments in Canada. An ensemble of 105 members was obtained by combining seven snow models (SMs), five potential evapotranspiration (PET) methods, and three hydrological model (HM) structures. The study was performed using high-resolution simulations from the Canadian Regional Climate Model (CRCM–15 km) driven by two members of the third-generation Canadian Coupled Global Climate Model (CGCM3). This study aims to compare various combinations of SM–PET–HM in terms of their ability to simulate streamflows under the current climate and to evaluate how they affect the assessment of the climate change–induced hydrological impacts at the catchment scale. The variability of streamflow response caused by the use of different SMs (degree-day versus degree-day/energy balance), PET methods (temperature-based versus radiation-based methods), and HM structures is evaluated, as well as the uncertainty due to the natural climate variability (CRCM intermember variability). The hydroclimatic simulations cover 1961–90 in the present period and 2041–60 in the future period. The ensemble spread of the climate change signal on streamflow is large and varies with catchments. Using the variance decomposition on three hydrologic indicators, the HM structure was found to make the most substantial contribution to uncertainty, followed by the choice of the PET methods or natural climate variability, depending on the hydrologic indicator and the catchment. Snow models played a minor, almost negligible role in the assessment of the climate change impacts on streamflow for the study catchments.


Nature ◽  
10.1038/17789 ◽  
1999 ◽  
Vol 397 (6721) ◽  
pp. 688-691 ◽  
Author(s):  
Mike Hulme ◽  
Elaine M. Barrow ◽  
Nigel W. Arnell ◽  
Paula A. Harrison ◽  
Timothy C. Johns ◽  
...  

Author(s):  
M.G. Debesai ◽  

The impact of climate change on the livelihood of farming households is a great concern particularly in developing countries. Based on a household survey conducted in 2016, in Eritrea, this paper attempts to investigate the adaptation conditions to climate change impacts on smallholder farming household. Several socioeconomic, biophysical and environmental factors affecting their farming system were listed by the respondents, including drought, soil degradation, pests and diseases, poor farm management, poor soil fertility, poor agricultural tools, and poor seed quality. Farming households employed short term coping mechanisms and long term adaption strategies to overcome the problems resulted from climate variability. The households cope up with short term climate variability at the expense of deteriorating their resources or losing their assets temporarily or permanently while they practice a long term adaptation strategy which is more or less in favour of sustaining the resource and preserving the environment. It is, therefore, recommended that policymakers need to encourage sustainable development and work to reduce the negative impact of climate change on farming households by emphasising on both short tern coping mechanisms and long term adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document