Navigation Channel Effects on Estuarine Mean Water Level

Author(s):  
William H. McAnally ◽  
Ellie R. Welp
1970 ◽  
Vol 7 (2) ◽  
pp. 607-625 ◽  
Author(s):  
G. C. Dohler ◽  
L. F. Ku

The methods and problems involved in collecting water level data are explained, and the processing and formats of the data are illustrated. The trend of the change in mean water level is plotted and the corresponding rate of change is estimated by the regression technique. The power spectra of the water level variations are plotted to illustrate these variations in terms of frequencies.


2016 ◽  
Vol 20 (3) ◽  
pp. 1177-1195 ◽  
Author(s):  
Huayang Cai ◽  
Hubert H. G. Savenije ◽  
Chenjuan Jiang ◽  
Lili Zhao ◽  
Qingshu Yang

Abstract. The mean water level in estuaries rises in the landward direction due to a combination of the density gradient, the tidal asymmetry, and the backwater effect. This phenomenon is more prominent under an increase of the fresh water discharge, which strongly intensifies both the tidal asymmetry and the backwater effect. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of substantial fresh water discharge, where the analytical solutions are obtained by solving a set of four implicit equations for the tidal damping, the velocity amplitude, the wave celerity, and the phase lag. The analytical model is used to quantify the contributions made by tide, river, and tide–river interaction to the water level slope along the estuary, which sheds new light on the generation of backwater due to tide–river interaction. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions where the influence of both tidal amplitude and fresh water discharge on the longitudinal variation of the mean tidal water level is explored. Analytical model results show that in the tide-dominated region the mean water level is mainly controlled by the tide–river interaction, while it is primarily determined by the river flow in the river-dominated region, which is in agreement with previous studies. Interestingly, we demonstrate that the effect of the tide alone is most important in the transitional zone, where the ratio of velocity amplitude to river flow velocity approaches unity. This has to do with the fact that the contribution of tidal flow, river flow, and tide–river interaction to the residual water level slope are all proportional to the square of the velocity scale. Finally, we show that, in combination with extreme-value theory (e.g. generalized extreme-value theory), the method may be used to obtain a first-order estimation of the frequency of extreme water levels relevant for water management and flood control. By presenting these analytical relations, we provide direct insight into the interaction between tide and river flow, which will be useful for the study of other estuaries that experience substantial river discharge in a tidal region.


2021 ◽  
Author(s):  
Erwan Garel ◽  
Ping Zhang ◽  
Huayang Cai

Abstract. Observations indicate that the fortnightly fluctuations in mean water level increase in amplitude along the lower half of a tide-dominated estuary (The Guadiana estuary) with negligible river discharge but remain constant upstream. Analytical solutions reproducing the semi-diurnal wave propagation shows that this pattern results from reflection effects at the estuary head. The phase difference between velocity and elevation increases from the mouth to the head (where the wave has a standing nature) as the high and low water levels get progressively closer to slack water. Thus, the tidal (flood-ebb) asymmetry in discharge is reduced in the upstream direction. It becomes negligible along the upper estuary half, as the mean sea level remains constant despite increased friction due to wave shoaling. Observations of a flat mean water level along a significant portion of an upper estuary, easier to obtain than the phase difference, can therefore indicate significant reflection of the propagating semi-diurnal wave at the head. Details of the analytical model shows that changes in the mean depth or length of semi-arid estuaries, in particular for macrotidal locations, affect the fortnightly tide amplitude, and thus the upstream mass transport and inundation regime. This has significant potential impacts on the estuarine environment.


Author(s):  
Alahyar Koochekali ◽  
Behrouz Gatmiri ◽  
Amirabbas Koochekali

True estimation of soil response during pipeline upheaval buckling is a key parameter in the safe design of subsea buried pipeline. In this paper the effects of sea mean water level over the buried pipeline and the effects of pipe burial depth on the soil response during vertical buckling are investigated. For that purpose a numerical modeling of pipeline upheaval buckling in clayey backfill has been conducted. Different sea mean water levels are considered to simulate the pipeline shore approach. In addition, various pipeline burial depths are considered to predict the soil uplift resistance and the soil failure mechanism. In order to model the large penetration of pipeline into the soft clay, Arbitrary Eulerian Lagrangian (ALE) method is employed. The results reveal that in the shallow water the sea mean water level may have considerable effects on the soil failure mechanism and soil uplift resistance. In addition, as the sea mean water level and pipe burial depth increases, a new transitional failure mechanism can be observed. The mechanism is a combination of vertical sliding block mechanism and the flow-around mechanism.


1987 ◽  
Vol 65 (8) ◽  
pp. 1906-1916 ◽  
Author(s):  
Bruno Vincent ◽  
Claude Brassard ◽  
Michel Harvey

Greater annual shell growth rate and increased mortality are observed in Macoma balthica (L.) with an increase of immersion time in the intertidal zone of the St. Lawrence estuary. There is also a greater annual growth rate in tidal pools, and sediment temperature alone may explain spatial variations in spring and annual growth. Reciprocal transfers of specimens between upper (0.8 m above mean water level) and lower (1.2 m below mean water level) tidal level result in enhanced shell growth for individuals of the upper level transferred to the lower level. There is no corresponding change of shell growth rate for individuals of the lower level. This genotypic difference in short-term physiological responses to environmental changes may be the result of different selective pressures associated with habitat temporal heterogeneity. An opportunistic strategy is associated with the more terrestrial and unpredictable environment (upper tidal level) and a more specialized strategy accompanied by low phenotypic variability is associated with the more marine and stable environment (lower tidal level).


2016 ◽  
Vol 20 (3) ◽  
pp. 221-236 ◽  
Author(s):  
Christian Butzeck ◽  
Uwe Schröder ◽  
J. Oldeland ◽  
S. Nolte ◽  
K. Jensen

2011 ◽  
Vol 15 (8) ◽  
pp. 2679-2692 ◽  
Author(s):  
M. Salvia ◽  
F. Grings ◽  
P. Ferrazzoli ◽  
V. Barraza ◽  
V. Douna ◽  
...  

Abstract. This paper describes a procedure to estimate both the fraction of flooded area and the mean water level in vegetated river floodplains by using a synergy of active and passive microwave signatures. In particular, C band Envisat ASAR in Wide Swath mode and AMSR-E at X, Ku and Ka band, are used. The method, which is an extension of previously developed algorithms based on passive data, exploits also model simulations of vegetation emissivity. The procedure is applied to a long flood event which occurred in the Paraná River Delta from December 2009 to April 2010. Obtained results are consistent with in situ measurements of river water level.


Author(s):  
Shiro Yamagata ◽  
Shouya Orishikise ◽  
Masaru Yamashiro ◽  
Yasuyuki Nakagawa ◽  
Noriaki Hashimoto ◽  
...  

In this study, the numerical simulation of tidal current and sediment transport in the Kanmon Waterway were performed by using a numerical simulation model FVCOM (Finite Volume Community Ocean Model (Chen et al. 2003)), in order to discuss the influence of the long-term fluctuation of mean water level on the sand waves. The numerical simulation results suggested that the spatial difference of the long-term fluctuation of mean water level in the Kanmon Straits slightly changes the tidal current around Tanoura Area, and consequently affects the development of sand waves.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/kfMfIVGiLKM


Sign in / Sign up

Export Citation Format

Share Document