Corrosion Damage in Composite-Wrapped Structures

Author(s):  
Harovel G. Wheat ◽  
James O. Jirsa ◽  
David W. Fowler ◽  
Emily Berver
Keyword(s):  
PCI Journal ◽  
2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Cameron D. Murray ◽  
Brittany N. Cranor ◽  
Royce W. Floyd ◽  
Jin-Song Pei

2020 ◽  
Vol 64 (1) ◽  
pp. 23-28
Author(s):  
J. Hodač ◽  
Z. Fulín ◽  
P. Mareš ◽  
J. Veselá ◽  
O. Chocholatý

AbstractTo produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.


Author(s):  
Galen McGill ◽  
Terry Shike

Oregon’s Coastal Bridge Program was designed to preserve the economic and cultural resources invested in Oregon’s coastal bridges. The Oregon Coast Highway contains a significant concentration of bridges listed on or eligible for the National Historic Register. Many of these reinforced concrete structures are suffering extensive corrosion damage resulting from years of exposure to the marine environment. Oregon has developed this program to evaluate, prioritize, and preserve these magnificent bridges. Preservation of these bridges has relied on the innovative application of cathodic protection technology. This new technology has been applied successfully through a project design and construction process that includes ongoing interaction among design engineers, researchers, construction project management personnel, and contractors.


2020 ◽  
Vol 25 (2) ◽  
pp. 66-71
Author(s):  
A.B. Drovosekov

Corrosion resistance properties, such as porosity, stability in the atmosphere of NaCl mist, and anodic electrochemical activity in a sulfuric acid solution are studied and compared for Ni-W-P and Ni-P coatings obtained by electroless deposition. The studied coatings were obtained from solutions with glycine as the main ligand and contained 10.2 to 15.6 at.% of phosphorus and up to 3.3 at.% of tungsten. It is shown that Ni-W-P coatings with a tungsten content of 2.3 to 3.3 at.% and a thickness of 15 μm have a significantly lower porosity as compared with nickel-phosphorus coatings of the same thickness. Also, significantly better stability of Ni-W-P coatings in a NaCl mist atmosphere was observed, their corrosion damage degree is less than that of Ni-P coatings, and relatively little depends on the duration of exposure in a corrosive environment. Analysis of anodic polarization curves showed an almost similar electrochemical activity upon dissolution of Ni-P and Ni-W-P coatings in sulfuric acid. Both these types of electroless coatings showed a markedly better tendency to anodic dissolution than pure nickel. Taking into account the obtained experimental data, a conclusion is made as to the better protective characteristics of Ni-W-P coatings in comparison with nickel-phosphorus coatings. The main reason of the inferior protective properties of Ni-P coatings is their relatively high porosity.


2020 ◽  
pp. 148-156
Author(s):  
A. S. Mitrofanov ◽  
Ye. A. Krainyuk ◽  
S. V. Gozhenko ◽  
V. N. Voyevodin ◽  
R. L. Vasilenko

Vacuum ◽  
2021 ◽  
pp. 110350
Author(s):  
Hulin Wu ◽  
Ping Gong ◽  
Suying Hu ◽  
Lin Xiang ◽  
Enlei Wang ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6772
Author(s):  
Charlotte Van Steen ◽  
Els Verstrynge

Corrosion of the reinforcement is a major degradation mechanism affecting durability and safety of reinforced concrete (RC) structures. As the corrosion process starts internally, it can take years before visual damage can be noticed on the surface, resulting in an overall degraded condition and leading to large financial costs for maintenance and repair. The acoustic emission (AE) technique enables the continuous monitoring of the progress of internal cracking in a non-invasive way. However, as RC is a heterogeneous material, reliable damage detection and localization remains challenging. This paper presents extensive experimental research aiming at localizing internal damage in RC during the corrosion process. Results of corrosion damage monitoring with AE are presented and validated on three sample scales: small mortar samples (scale 1), RC prisms (scale 2), and RC beams (scale 3). For each scale, the corrosion process was accelerated by imposing a direct current. It is found that the AE technique can detect damage earlier than visual inspection. However, dedicated filtering is necessary to reliably localize AE events. Therefore, AE signals were filtered by a newly developed post-processing protocol which significantly improves the localization results. On the smallest scale, results were confirmed with 3D micro-CT imaging, whereas on scales 2 and 3, results were compared with surface crack width measurements and resulting rebar corrosion levels.


Sign in / Sign up

Export Citation Format

Share Document