Flow Deformation of Liquefied Sand Under Constant Shear Load and Prediction of Flow Slide of Infinite Slope

Geomechanics ◽  
2005 ◽  
Author(s):  
Mitsutoshi Yoshimine ◽  
Hiroto Nishizaki ◽  
Kei Amano ◽  
Yasuyo Hosono
Author(s):  
JT Stephen ◽  
MB Marshall ◽  
R Lewis

Bolted joints are widely used in a variety of engineering applications where they are dynamically loaded with frequencies of vibration spread over a wide spectrum with the same general effects. When under dynamic loading, bolted joints can become loose due to a loss in clamping pressure in the joints. This vibrational loosening sometimes can cause serious problems, and in some cases can lead to fatal consequences if it remains undetected. Non-intrusive ultrasonic and image processing techniques were simultaneously used to investigate the relaxation of contact pressure and loosening of bolted joints subjected to cyclic shear loading. Three critical areas, the contact interface of the bolted component, the bolt length and the rotation of the bolt head, were monitored during loosening of the joints. The results show that loosening of bolted joints can be grouped into three stages: very rapid, rapid, and gradual loosening. The earliest stage of the loosening of bolted joints is characterised by cyclic strain ratcheting–loosening of the bolted joint during vibration without rotation of the bolt head. The higher the rate of relaxation at this early stage, the lower is the resistance of the bolted joint to vibration-induced loosening. Both the dynamic shear load and an additional constant shear load in another direction were observed to affect the rate of loosening, and at this early stage, a rise in the magnitude of the additional constant shear load increases the rate of loosening. Furthermore, the contact pressure distribution affects the rate of loosening at the bolted joint interface, as loosening increases away from area of high contact pressure.


Landslides ◽  
2021 ◽  
Author(s):  
J. M. Carey ◽  
B. Cosgrove ◽  
K. Norton ◽  
C. I. Massey ◽  
D. N. Petley ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Rajinder Ghai ◽  
Prem Pal Bansal ◽  
Maneek Kumar

There is a common phenomenon of shear failure in RCC beams, especially in old buildings and bridges. Any possible strengthening of such beams is needed to be explored that could strengthen and make them fit for serviceable conditions. The present research has been made to determine the performance of predamaged beams strengthened with three-layered wire mesh polymer-modified ferrocement (PMF) with 15% styrene-butadiene-rubber latex (SBR) polymer. Forty-eight shear-designed and shear-deficient real-size beams were used in this experimental work. Ultimate shear load-carrying capacity of control beams was found at two different shear-span (a/d) ratios 1 and 3. The sets of remaining beams were loaded with different predetermined damage levels of 45%, 75%, and 95% of the ultimate load values and then strengthened with 20 mm thick PMF. The strengthened beams were then again tested for ultimate load-carrying capacity by conducting the shear load test at a/d = 1 and 3. As a result, the PMF-strengthened beams showed restoration and enhancement of ultimate shear load-carrying capacity by 5.90% to 12.03%. The ductility of strengthened beams was improved, and hence, the corresponding deflections were prolonged. On the other hand, the cracking pattern of PMF-strengthened beams was also improved remarkably.


2021 ◽  
Vol 11 (2) ◽  
pp. 605
Author(s):  
Antonio Agresta ◽  
Nicola Cavalagli ◽  
Chiara Biscarini ◽  
Filippo Ubertini

The present work aims at understanding and modelling some key aspects of the sloshing phenomenon, related to the motion of water inside a container and its effects on the substructure. In particular, the attention is focused on the effects of bottom shapes (flat, sloped and circular) and water depth ratio on the natural sloshing frequencies and damping properties of the inner fluid. To this aim, a series of experimental tests has been carried out on tanks characterised by different bottom shapes installed over a sliding table equipped with a shear load cell for the measurement of the dynamic base shear force. The results are useful for optimising the geometric characteristics of the tank and the fluid mass in order to obtain enhanced energy dissipation performances by exploiting fluid–structure interaction effects.


Author(s):  
Ruixiu Guo ◽  
Wei Hu ◽  
Qi Song ◽  
Shude Ji ◽  
Weiwei Qi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 238 ◽  
pp. 112211
Author(s):  
Jin Xia ◽  
Kuang-yi Shan ◽  
Xiao-hui Wu ◽  
Run-li Gan ◽  
Wei-liang Jin

Author(s):  
Mahesh Khanolkar ◽  
Jaskirat Sodhi ◽  
I. Joga Rao

The constitutive model for the mechanics of crystallizable shape memory polymers (CSMP) has been developed in the past [1, 2]. The model was developed using the theory of multiple natural configurations and has been successful in addressing a diverse class of problems. In this research work, the efficacy of the developed CSMP model is tested by applying it to the torsion of a cylinder, which is an inhomogeneous deformation. The crystallization of the cylinder is studied under two different conditions i.e. crystallization under constant shear and crystallization under constant moment.


1998 ◽  
Vol 25 (24) ◽  
pp. 4561-4564 ◽  
Author(s):  
Stephen L. Karner ◽  
Chris Marone
Keyword(s):  

2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Kazushi Nakai ◽  
Soichi Tanaka ◽  
Kozo Kanayama ◽  
Tsuyoshi Yoshimura

Abstract African blackwood (ABW: Dalbergia melanoxylon) is a valuable tree in Tanzanian local community forests, and heartwood has been mainly utilized as an irreplaceable material in musical instruments, e.g., clarinet, oboe and piccolo. Since its use is generally for the production of musical instruments only, most of the harvested volume is wasted due to defects that would affect the quality of final products. Wood flow forming can transform bulk woods into materials in temperature/pressure-controlled mold via plastic flow deformation. The main object of this study was to evaluate the deformation characteristics of ABW heartwood in developing the potential of wasted ABW parts in terms of the effective material use. The deformation characteristics of heartwood were examined by free compression tests. Specimens were compressed along the radial direction at 120 °C, and air-dried heartwood was dramatically deformed in the tangential direction. The plastic flow deformation of ABW was amplified by the presence of both extractives and moisture. In particular, the ethanol/benzene (1:2, v/v) soluble extractives in heartwood may have contributed to flow deformation. The results of the dynamic mechanical analysis showed that the air-dried heartwood exhibited softening in a temperature range over 50 °C. The ethanol/benzene-soluble extractives contributed to the softening behavior. The clarified deformation characteristics of ABW can contribute to more efficient material use of local forests.


Sign in / Sign up

Export Citation Format

Share Document