Improving the Tensile Shear Load of Al–Mg–Si Alloy FSLW Joint by BPNN–GA

Author(s):  
Ruixiu Guo ◽  
Wei Hu ◽  
Qi Song ◽  
Shude Ji ◽  
Weiwei Qi ◽  
...  
Keyword(s):  
2020 ◽  
Vol 10 (17) ◽  
pp. 5947
Author(s):  
Dong Hyuck Kam ◽  
Taek Eon Jeong ◽  
Jedo Kim

This study investigates the quality of self-piercing riveted joints between vibration-damping aluminum (Al) and other dissimilar materials, namely aluminum alloy (AL5052-H32), steel alloy (GA590DP), and carbon-reinforced plastic (CFRP). The effects of die types (flat, cone, and nipple) on the geometrical characteristics and mechanical performance of the joints are studied using a cross-section examination and tensile shear load testing. The failure modes of each joint are also presented, showing the nature of the forces leading to the joint failures. The results indicate that, for all configurations, adequate joining between vibration-damping Al with AL5052-H32 is expected with a maximum shear load up to 3.28 kN. A shear load up to 3.6 kN was measured for the joints with GA590DP panels with acceptable top and bottom seal characteristics. A vibration-damping Al panel can only be positioned at the bottom when riveting with CFRP due to the brittle nature of CFRP. A tensile shear load up to 2.26 kN was found, which is the lowest amongst the materials tested in this study.


2015 ◽  
Vol 38 (8) ◽  
pp. 914-922 ◽  
Author(s):  
B. Wang ◽  
Q. Q. Duan ◽  
G. Yao ◽  
J. C. Pang ◽  
Z. F. Zhang ◽  
...  

2018 ◽  
Vol 8 (5) ◽  
pp. 3492-3495
Author(s):  
A. Alzahougi ◽  
M. Elitas ◽  
B. Demir

Based on this study, the effects of the different types of welding currents and electrode pressures on the tensile shear properties of the resistance spot welding (RSW) which are the joints of the commercial DP600 sheet steel are now been investigated. In addition to the fact that the electrode pressure is not much of a popular piece or topic of discussion in the literature, the expression of the mechanical properties of these commercial materials (most importantly in the DP and in the high strength steels). These factors that are known to be affecting the strength of the material are dispute. In the tensile shear tests of this welded joints; the tensile shear force and the maximum displacement were utilized to characterize the performance of the welding processes. The nugget diameter has been measured to create a clear definition of the RSW physical properties. The experimental results show that the tensile shear load bearing capacity is bond to increase as the electrode pressure increases based on a value in both the welding currents and the decrease at the higher values. The low current value at low and at the highest electrode pressures; during the high current value which could be at the middle of the electrode pressure values it can exhibit the superior mechanical properties. The effect of this electrode pressure on the tensile shear load bearing capacity is bond to increase as the welding current increases as well. This, also been assessed and examined based on the low carbon content.


2019 ◽  
Vol 11 (08) ◽  
pp. 1950077 ◽  
Author(s):  
Guanglong Cao ◽  
Cheng Huang ◽  
Tong Li ◽  
Yahui Zhang ◽  
Mingfa Ren

The mechanical performances of welded joints under bi-axial loading are significant to the reliability of various engineering structures. However, the protocol for the mechanical characterization of welded joints still needs to be improved to represent the mechanical performances of welded joints under complex loading conditions. In this work, an experimental design is proposed for the mechanical characterization of 2219 aluminum alloy welded joints. The target is to investigate the effects of combined tensile-shear load on the mechanical responses and failure behavior of 2219 aluminum alloy welded joints. The tensile-shear characterization was then conducted using a newly developed U-notch aluminum alloy welded joints specimen. In addition, standard tensile test and standard shear test were conducted to validate of the U-notch specimen design. This newly proposed experimental protocol is suitable to obtain mechanical properties of 2219 aluminum alloy welded joints subjected to tensile-shear load.


2014 ◽  
Vol 633-634 ◽  
pp. 601-606
Author(s):  
Xi Jing Wang ◽  
Xiao Long Wang ◽  
Zhong Ke Zhang ◽  
Wen Xia Jing

The 2 mm sheet of 6082 - T6 aluminum alloy was carried to develop refill friction stir welding and withdrawing friction stir spot welding,the forming of solder joints , the cross-sectional microstructure and fracture morphology of welding joints were observed and analyzed, the cross-sectional microhardness of welding joints were tested. Tensile shear load and fracture mode were contrasted simultaneously. The results showed that smooth surface and free of macroscopic defects of welding joints could be obtained in both welding type. Tensile shear load of WFSSW was up to 10.28kN under the optimal process parameters greater than RFSSW’s 8.62kN.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2167 ◽  
Author(s):  
Hongyang Wang ◽  
Nan Li ◽  
Liming Liu

A novel joining technology was applied to join Fiber Reinforced Polymer (FRP) and AZ31B Mg alloy, which combined the laser-arc welding source and riveting joining methods. The design idea of the stepped rivet was proposed. The weld morphology, mechanical properties, microstructures of welds under two different rivet structures were investigated. FRP and AZ31B Mg could be joined successfully by the new hybrid joining method when it used two different structural rivets. The maximum tensile shear load of the joint under stepped rivet of small size was only 800 N, while that of the joint under stepped rivet of the larger size could reach 1419 N, nearly 90% of that of FRP. There was no reaction between the FRP plate and AZ31B rivet. While the magnesium elements and aluminum elements diffused and reacted with other elements in the FRP plate/AZ31B plate interface.


Sign in / Sign up

Export Citation Format

Share Document