Influence of Swell on Shear Strength of Expansive Soils

Author(s):  
Abdullah I. Al-Mhaidib ◽  
Mosleh A. Al-Shamrani
2021 ◽  
Vol 337 ◽  
pp. 01003
Author(s):  
Valteson da Silva Santos ◽  
Allan B.Silva de Medeiros ◽  
Romário S.Amaro da Silva ◽  
Olava F. Santos ◽  
Osvaldo de Freitas Neto ◽  
...  

In the last decades, several engineering works have been developed in the Northeast of Brazil, a region marked by the occurrence of collapsible and expansive soils. This work aimed to characterize and study the behavior of two samples of residual soils collected in the municipality of Salgueiro-PE regarding their collapse potentials and shear strength parameters, in natural and disturbed conditions, evaluating the influence of the applied vertical stresses and the structural arrangement in these properties. The results obtained showed that the two samples analyzed show collapsible behavior, however, the observed potential for collapse was lower after the original structure arrangement was undone. From the direct shear strength tests, the strength parameters of the two soils were obtained, which pointed effective friction angle close to 30° and cohesive intercept close to 0 kPa. The destructuring of the samples did not cause a considerable variation in these parameters. Thus, it was possible to conclude that for these samples the microstructure has a predominant influence on the occurrence of collapsibility, but does not have the same relevance on the shear strength, such that the material’s destructuring can be considered as an effective measure to reduce the potential collapse.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tao Li ◽  
Yanqing He ◽  
Guokun Liu ◽  
Binru Li ◽  
Rui Hou

Expansive soil is characterized by its unique structural morphology and drastic volume change. With infrastructure increasingly constructed in expansive soil areas, engineering problems caused by the properties of expansive soils have attracted more attention. Cyclic wetting-drying and shear testing were accordingly conducted on an expansive soil from Chengdu area in China. Crack development and shear strength change were analyzed using the Mohr–Coulomb equation for shear strength by fitting the experimental data. The results show the following: (1) With the increase in wetting-drying cycles, the crack ratio increases, the shear strength decreases, and the shear strength parameters gradually decrease at the same rate of change. The applied vertical load reduces the weakening effect of the wetting-drying cycles on the soil structure and strength by restraining the expansion and contraction deformation. (2) By analyzing the number of wetting-drying cycles and the crack images, the crack development (length, direction, etc.) of the expansive soil can be predicted and described. (3) There is a specific linear correlation between the crack ratio and strength that approached a limit value with ongoing wetting-drying cycles. The strength of the expansive soil can therefore be obtained based on crack development, improving the ability of designers to account for the behaviour of expansive soils.


2014 ◽  
pp. 1267-1272
Author(s):  
L Chen ◽  
X Zhao ◽  
L Lu ◽  
Y Zhang ◽  
W Gao ◽  
...  

2012 ◽  
Vol 238 ◽  
pp. 431-434
Author(s):  
Yun Dong ◽  
Wei Zhong He ◽  
Bao Tian Wang

To offer or predict the shear strength of compacted lime stabilized expansive soils after long-term immersion for the slope analysis, the paper carried out direct shear test on the compacted stabilized expansive soils after different immersion time. The test results show that long-term immersion has significant impact on the shear strength of the lime stabilized expansive soils, the shear strength reduced sharply after soaking, but the shear strength tends to a stable value about 60%~70% normal strength while soaking is longer than 50 days. Logarithm model can well fitted the sketch of φ, c and immersion times within 50 days, which may be used to predict the shear strength of the stabilized expansive soils quickly.


Fractals ◽  
2001 ◽  
Vol 09 (01) ◽  
pp. 51-60 ◽  
Author(s):  
YONGFU XU ◽  
DE'AN SUN

The micropore surface fractal model for expansive soils is proposed in this paper. Based on the results of the mercury intrusion tests, it is found that the micropore surface fractal dimension is 2.40 for the soil sample with the dry density of 1.50 g/cm 3, and is 2.47 for the soil sample with the dry density of 1.60 g/cm 3. By using the micropore surface fractal model, the shear strength formula for expansive soils is obtained. All the parameters in the proposed shear strength formula are constant, and are independent of matric suction. The validation of the proposed shear strength formula is proven by the results of the triaxial compression tests on an expansive soil taken from Ningxia, China.


2018 ◽  
Vol 206 ◽  
pp. 01002
Author(s):  
Zheng Su ◽  
Daokun Qi ◽  
Xinju Guo ◽  
Xiaojuan Xi ◽  
Liang Zhang

In recent years, engineering constructions increase rapidly in western and central areas of China, where expansive soil widely distributes. Since expansive soil is sensitive to water content, the characterization of its shear strength should be carefully conducted. For simplicity and ease of use, the Mohr-Coulomb criterion is often adopted to describe the shear strength of expansive soil. In this paper, the physical meaning of the cohesion and frictional strength of expansive soil are explained, and the variations of the strength parameters with water content are investigated. By fitting to the experimental results from direct shear test and triaxial tests, the changing characteristics of cohesion and friction angle with water content are obtained.


Sign in / Sign up

Export Citation Format

Share Document