Effect of Pore Water Pressure on Stress- Strain Characteristics of Dense Sand

Author(s):  
Awad A. Al-Karni
2016 ◽  
Vol 53 (9) ◽  
pp. 1460-1473 ◽  
Author(s):  
Dharma Wijewickreme ◽  
Achala Soysa

The cyclic shear response of soils is commonly examined using undrained (or constant-volume) laboratory element tests conducted using triaxial and direct simple shear (DSS) devices. The cyclic resistance ratio (CRR) from these tests is expressed in terms of the number of cycles of loading to reach unacceptable performance that is defined in terms of the attainment of a certain excess pore-water pressure and (or) strain level. While strain accumulation is generally commensurate with excess pore-water pressure, the definition of unacceptable performance in laboratory tests based purely on cyclic strain criteria is not robust. The shear stiffness is a more fundamental parameter in describing engineering performance than the excess pore-water pressure alone or shear strain alone; so far, no criterion has considered shear stiffness to determine CRR. Data from cyclic DSS tests indicate consistent differences inherent in the patterns between the stress–strain loops at initial and later stages of cyclic loading; instead of relatively “smooth” stress–strain loops in the initial parts of loading, nonsmooth changes in incremental stiffness showing “kinks” are notable in the stress–strain loops at large strains. The point of pattern change in a stress–strain loop provides a meaningful basis to determine the CRR (based on unacceptable performance) in cyclic shear tests.


2021 ◽  
Vol 27 (12) ◽  
pp. 1-12
Author(s):  
Haider N. Abdul Hussein ◽  
Qassun S. Mohammed Shafiqu ◽  
Zeyad S. M. Khaled

Experimental model was done for pile model of L / D = 25 installed into a laminar shear box contains different saturation soil densities (loose and dense sand) to evaluate the variation of pore water pressure before and after apply seismic loading. Two pore water pressure transducers placed at position near the middle and bottom of pile model to evaluate the pore water pressure during pullout tests. Seismic loading applied by uniaxial shaking table device, while the pullout tests were conducted through pullout device. The results of changing pore water pressure showed that the variation of pore water pressure near the bottom of pile is more than variation near the middle of pile in all tests. The variation of pore water pressure after apply seismic loading is more than the variation before apply seismic loading near the middle of pile and near the bottom of pile and in loose and dense sand. Variation of pore water pressure after apply seismic loading and uplift force is less than the variation after apply seismic loading in loose sand at middle and bottom of pile.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanzhao Zhang ◽  
Shuangying Zuo ◽  
Rita Yi Man Li ◽  
Yunchuan Mo ◽  
Guosheng Yang ◽  
...  

Abstract This study investigated the macroscopic physical and mechanical properties of Guiyang red clay during surcharge loading, lateral excavation and lateral unloading with axial loading, and clarified the failure mechanism of microstructure before and after shear under different stress paths of CTC, RTC and TC. Consolidated undrained triaxial shear permeability, SEM scanning, XRF fluorescence spectrum analysis and XRD diffraction tests were conducted to simulate the actual engineering conditions. The stress–strain curve, shear strength, pore water pressure variation rule and macroscopic failure mode of soil samples under different stress paths were analysed. In addition, Image Pro Plus 6.0 and PCAS were used to study the relationship between the macro mechanical properties and micro microstructure failure under different stress paths. The stress–strain curves from CTC, RTC and TC in CU tests were different, with the peak values of shear stress under the three stress paths being P-increasing, equal P-path and P-decreasing path. Moreover, the internal friction angle and cohesion of the increasing P path were higher than those of equal P path and decreasing P path, hence, the influence of stress paths on the cohesion is greater than that of internal friction angle. The pore water pressure is strongly dependent on the stress path, and the variation characteristics of pore water pressure are consistent with the change in the law of the stress–strain curve. Under the same confining pressure in the P-increasing path, the shear failure zone runs through the whole soil sample, and the shear failure zone is significant, whereas under the condition of the P-reducing path, the shear failure angle of soil sample is about 65°, 55° and 45°, and in the equal P path, the soil sample is dominated by the confining pressure, with no obvious microcrack on the surface of the soil sample. The difference is that the distribution of pores in the path of increasing P and equal P is directional, and the anisotropy rate is small, while the distribution of pores in soil samples with shear failure and before shear is random and the anisotropy rate is high.


1996 ◽  
Vol 33 (2) ◽  
pp. 209-218 ◽  
Author(s):  
K D Eigenbrod ◽  
T Issigonis

During driving of steel piles through soft, sensitive clay into very dense sand and gravel, pore-water pressure responses were monitored. As a result of the large length of the piles and also because of the high sensitivity of the soft clays, the piles were driven in two stages. During the initial stage of driving in the soft clay, only very small pore-water pressure increases were recorded together with very low pile driving resistances; however, during the second stage of driving, high pore-water pressure increases were observed in the clay as soon as the piles penetrated into the underlying very dense sand and gravel. It was concluded that the clay deposit was loaded from below, as the piles were driven into very dense sand. The total stress changes and the resulting pore-water pressure changes in the clay were analyzed, assuming that the pile driving load was equivalent to a flexible load acting on the surface of an elastic half-space, which represents the soft clay deposit. This interpretation of the pore-water pressure increases is important for the assessment of the bearing capacity of engineering structures affected by piles driven through soft soils into very dense deposits. The potential for high pore-water pressure increases in the clay during undrained loading as well as for volume increases in the dense sand due to pile driving can be predicted from piezocone test data. Key words: pile driving, pore-water pressure, piezocone testing, soft sensitive clays, dense sand deposits.


2013 ◽  
Vol 423-426 ◽  
pp. 626-634 ◽  
Author(s):  
Gang Zhou ◽  
Yan Bin Yu ◽  
Wei Min Cheng

By means of MTS electro-hydraulic servo system, specimens from deep coal mine rock are conducted the permeability characteristics experiment under the condition of the stress-strain process and high pore-water pressure, also the results show that both the permeability rate and volumetric strain curves are V shaped, which link the dynamic changes of the microscopic fracture porosity and corresponds with the stress-strain. Meanwhile, under certain external conditions, whether the change of the pore-water pressure can improve the permeability properties or not, it depends on the critical threshold, moreover, the permeability properties under pore-water pressure higher than critical threshold have been improved several times than that at low pore-water pressure, and the peak of strain-permeability rate has a corresponding change with the peak of stress-strain curve, which shows a hysteretic characteristic. The higher the pore-water pressure is, the lower peak strength is needed, the more distinctive effects of dilatation emerge, and the more strain is needed for the appearance of permeability peak, This article provides the basis for the employment of high pore-water pressure to improve the permeability and disaster prevention of coal rock water injection.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 35 (2) ◽  
pp. 111
Author(s):  
Kun ZHANG ◽  
Ze ZHANG ◽  
Xiangyang SHI ◽  
Sihai LI ◽  
Donghui XIAO

Sign in / Sign up

Export Citation Format

Share Document