Dynamic Life Cycle Assessment of Building Design and Retrofit Processes

Author(s):  
Sarah Russell-Smith ◽  
Michael Lepech
2012 ◽  
Vol 727-728 ◽  
pp. 815-820 ◽  
Author(s):  
Jerônimo Moraes Gomes ◽  
Ana Luiza Folchini Salgado ◽  
Dachamir Hotza

Ceramic bricks are one of the most widely used materials in both commercial and residential buildings. Ceramic bricks play a relevant role in the Brazilian economy. The basic input material for this industry is red clay. As environmental problems increase, the need for environment-friendly building design increases. To achieve this, architects and engineers need reliable data on the environmental impacts of various building materials, including ceramic bricks. In this paper a comparative Life Cycle Assessment between two ceramic brick production units in Santa Catarina State, Brazil, has been carried in a comparative approach. Key impact categories, including fossil fuel use, global warming, ozone depletion, ecotoxicity, and human toxicity were assessed. The analysis has shown a particular relevance of the respiratory effects in both systems and the critical point has been found in the fuel used in the furnace for firing the bricks which are responsible, during the ring process, for the relevant CO2 emissions.


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


2019 ◽  
Vol 8 (5) ◽  
pp. 383 ◽  
Author(s):  
Toktam B. Tabrizi ◽  
Arianna Brambilla

Life Cycle Assessment (LCA), developed over 30 years ago, has been helpful in addressing a growing concern about the direct and indirect environmental impact of buildings over their lifetime. However, lack of reliable, available, comparable and consistent information on the life cycle environmental performance of buildings makes it very difficult for architects and engineers to apply this method in the early stages of building design when the most important decisions in relation to a building’s environmental impact are made. The LCA quantification method with need of employing complex tools and an enormous amount of data is unfeasible for small or individual building projects. This study discusses the possibility of the development of a tool that allows building designers to more easily apply the logic of LCA at the early design stage. Minimising data requirements and identifying the most effective parameters that promise to make the most difference, are the key points of simplification method. The conventional LCA framework and knowledge-based system are employed through the simplification process. Results of previous LCA studies in Australia are used as the specific knowledge that enable the system to generate outputs based on the user’s inputs.Keywords: Life Cycle Assessment (LCA), early design stage, most effective parameters, life cycle environmental performance


2017 ◽  
Author(s):  
Jonas Jonasson ◽  
Itai Danielski ◽  
Michelle Svensson ◽  
Morgan Fröling

A life cycle assessment (LCA) of a low energy / passive house in northern Sweden, including building materials and energy use is reported. The case study building is semi detached house for two families situated in Östersund (lat. 63°N), Sweden. Each apartment having a floor space of 160 m2 divided on two floors. The building was constructed during 2010 with a design meeting the requirements for Swedish passive houses as defined by the Forum for energy efficiency buildings (FEBY) and the Swedish center for zero energy houses (SCNH). When it comes to more sustainable buildings, energy use in the build environment has been in focus for some time. The life cycle assessment in this study reveals that the building materials can contribute significantly to environmental burdens of a residential building in northern Sweden. Energy efficiency, efficient use of good building materials and issues of appropriate design need to be discussed in the same context to move toward a more sustainable built environment. For energy efficient buildings in a energy system with renewably based energy carriers, building materials might give rise to a significant or even dominating part of the life cycle impact of a building. This give rise to considerations regarding choices of building materials as well as design of buildings to minimize such impact; while not forgetting social aspects impacted by building design.


2016 ◽  
Vol 13 (10) ◽  
pp. 7212-7225 ◽  
Author(s):  
Zhao Xu ◽  
Yang Zhang ◽  
Heng Li ◽  
Qiming Li

Energy consumption by and emissions from buildings contribute greatly to environmental degradation. Currently, an important tool in the study of architectural conservation design is LCA (life-cycle assessment), with the goal of minimizing energy consumption and environmental impact. The research suggests a method to apply LCA analysis and BIM technology to design 3D BIM models and define the relationship between BIM elements and architectural materials. The obvious advantages of combining BIM with LCA have resulted in its wide use for building life cycle assessment. The study propose here quantitative analysis of environmental impact by construction and build an index database for environmental impact assessment of building projects based on analytical hierarchy process. The design plan of the Teaching and Research Building of a University in Nanjing China is taken as the example to calculate energy consumption in response models formed from construction data. From these modeled calculations, then the key environmental impact factors were analyzed. The objective is to suggest an integrated solution to BIM-based environmental impact assessment of building construction and also provide a theoretical support for optimized building design. This case study demonstrates the utility of BIM when performing LCA, providing most of the information needed to perform LCA.


Sign in / Sign up

Export Citation Format

Share Document