Development and Applications of the FEMA Region IV Coastal Flood Loss Atlas

Author(s):  
Herbert E. "Gene" Longenecker, III
Keyword(s):  
2021 ◽  
Author(s):  
Kevin Horsburgh ◽  
Ivan D. Haigh ◽  
Jane Williams ◽  
Michela De Dominicis ◽  
Judith Wolf ◽  
...  

AbstractIn this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variability of local sea level response, and our short observational record, understanding the natural variability of storm surges is at least as important as understanding projected long-term mean sea level changes due to global warming. Using the December 2013 North Atlantic Storm Xaver as a baseline, we used a meteorological forecast modification tool to create “grey swan” events, whilst maintaining key physical properties of the storm system. Here we define “grey swan” to mean an event which is expected on the grounds of natural variability but is not within the observational record. For each of these synthesised storm events, we simulated storm tides and waves in the North Sea using hydrodynamic models that are routinely used in operational forecasting systems. The grey swan storms produced storm surges that were consistently higher than those experienced during the December 2013 event at all analysed tide gauge locations along the UK east coast. The additional storm surge elevations obtained in our simulations are comparable to high-end projected mean sea level rises for the year 2100 for the European coastline. Our results indicate strongly that mid-latitude storms, capable of generating more extreme storm surges and waves than ever observed, are likely due to natural variability. We confirmed previous observations that more extreme storm surges in semi-enclosed basins can be caused by slowing down the speed of movement of the storm, and we provide a novel explanation in terms of slower storm propagation allowing the dynamical response to approach equilibrium. We did not find any significant changes to maximum wave heights at the coast, with changes largely confined to deeper water. Many other regions of the world experience storm surges driven by mid-latitude weather systems. Our approach could therefore be adopted more widely to identify physically plausible, low probability, potentially catastrophic coastal flood events and to assist with major incident planning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Hooijer ◽  
R. Vernimmen

AbstractCoastal flood risk assessments require accurate land elevation data. Those to date existed only for limited parts of the world, which has resulted in high uncertainty in projections of land area at risk of sea-level rise (SLR). Here we have applied the first global elevation model derived from satellite LiDAR data. We find that of the worldwide land area less than 2 m above mean sea level, that is most vulnerable to SLR, 649,000 km2 or 62% is in the tropics. Even assuming a low-end relative SLR of 1 m by 2100 and a stable lowland population number and distribution, the 2020 population of 267 million on such land would increase to at least 410 million of which 72% in the tropics and 59% in tropical Asia alone. We conclude that the burden of current coastal flood risk and future SLR falls disproportionally on tropical regions, especially in Asia.


2020 ◽  
Vol 56 (9) ◽  
Author(s):  
Lukas Schoppa ◽  
Tobias Sieg ◽  
Kristin Vogel ◽  
Gert Zöller ◽  
Heidi Kreibich
Keyword(s):  

2011 ◽  
Vol 31 (4) ◽  
pp. 438-448 ◽  
Author(s):  
Samuel D. Brody ◽  
Joshua Gunn ◽  
Walter Peacock ◽  
Wesley E. Highfield

The rising cost of floods is increasingly attributed to the pattern and form of the built environment. Our study empirically tests this notion by examining the relationship between development intensity and property damage caused by floods. We examine five years of insured flood loss claims across 144 counties and parishes fringing the Gulf of Mexico. Results indicate that clustered, high-intensity development patterns significantly reduce amounts of reported property damage, while increasing percentages of sprawling, low-intensity development involving recent conversion of open space greatly exacerbate flood losses. These findings demonstrate the importance of community development design in fostering flood-resilient communities.


2007 ◽  
Vol 55 (7) ◽  
pp. 1507-1518 ◽  
Author(s):  
Muh Aris Marfai ◽  
Lorenz King

2021 ◽  
Author(s):  
Manuel Urrutia ◽  
Guido Riembauer ◽  
Angel A. Valdiviezo-Ajila ◽  
Stalin Jímenez ◽  
Antonio R. Andrade ◽  
...  

<p>The Sendai Framework for Disaster Risk Reduction (SFDRR) provides a concrete agenda for evidence-based policy for disaster risk reduction as a key component of the post-2015 global development agenda. However, the progress of implementing the seven Global Targets of the SFDRR at the national level via the monitor of a set of thirty-eight indicators is obstructed due to a lack of available, accessible, and validated data on disaster-related loss and damage, especially in developing countries. This weakens the accuracy, timeliness, and quality of the Sendai monitoring process. In the case of floods, which account for the highest number of people affected by hazards,[WY1]  there is a strong need for innovative and  appropriate tools for monitoring and reporting flood impacts.</p><p>The country of Ecuador and their validated national flood loss and damage database, which stretches back to 1970, is a stark counterpoint to the norm and serves as the case study for this research. In this research we develop a geospatial model approach, which combines earth observation-based information products with additional geospatial data to result quantitative measures for selected indicators of the SFDRR and validate them based on an existing database on flood loss and damage in Ecuador. Specifically, we build on automated  derivation of flood event characteristics from a full year of Sentinel-1 synthetic aperture radar data to assess flood hazard in Ecuador, and complement this with geospatial data on flood-related exposure and vulnerability to model selected indicators of the SFDRR in a spatially explicit way. The validation process of this geospatial model is conducted in reference to in situ loss and damage data related to flooding for the years 2017, 2018, and 2019. The derivation of information products is conducted in close collaboration with the National Service for Risk and Emergency Management of the Government of Ecuador, the country office of the United Nations Development Program, and the United Nations Office for Disaster Risk Reduction. It is thereby assured that the development and validation of this methodology is in line with the national and international approach of implementing the SFDRR.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document