Numerical Simulation Research on the Reliability of Oil/Gas Pipelines Based on Semi-Analytical Method

ICPTT 2011 ◽  
2011 ◽  
Author(s):  
Yaorong Feng ◽  
Tongtao Wang ◽  
Xiangzhen Yan ◽  
Xiujuan Yang
2021 ◽  
Vol 1838 (1) ◽  
pp. 012061
Author(s):  
Qihui Zhou ◽  
Zhanjun Huang ◽  
Yong Wu ◽  
Huipeng Zhang ◽  
Yufeng Shi ◽  
...  

2011 ◽  
Vol 181-182 ◽  
pp. 366-371
Author(s):  
Hui Liu ◽  
Yan Qiang Li

The micro particle brings much harm to some industrials, agriculture and human activities. The mechanical models of micro particle adhesion to the surface and the control, disposal technology have become very important for prevention from particle aggradations. For the sake of deeply comprehending and researching the adhesion mechanism as well as kinematics characteristic, numerical simulation of particle adhesion was made based on compute simulation package, the analysis of results and relevant comparison demonstrate that it can well simulate actual state and the results of simulation show that the capillary force (Fc) is the biggest, by contrast, the electrostatic force (Fes) is the smallest. Further more, it has some valuable instructions and helpful references for control of micro-particle adhesion to surface. At last, the outlook of issue was put forward.


2012 ◽  
Vol 468-471 ◽  
pp. 2248-2254
Author(s):  
Qiang Li ◽  
Wan Kui Bu ◽  
Hui Xu ◽  
Xiao Bo Song

The numerical model of top coal drawing in gently inclined seam is built based on PFC2d software. By comparing with the theory of drawn-body movement law, it can be obtained that the shape of top coal drawn-body accords with the theory of random medium movement. The research results show that the form of the shape equation of top coal drawn-body is uniform while the top coal caving angle is different. On the other hand, with the difference of top coal caving angle and drawing height, the shape of top coal drawn-body is differential at the meso scale, which depends on the parameters of the shape equation of top coal drawn-body.


2016 ◽  
Vol 851 ◽  
pp. 163-167
Author(s):  
Dong Yan Lin ◽  
Yi Li

The hydroforming process of the aluminum alloy panel was simulated by the software DYNAFORM. The effects of process parameters (blank holder force, depth of panel and height of draw bead) on springback of the aluminum alloy were investigated. The max springback of the panel was analyzed by weighted scoring method. Then the process parameters were synthetically optimized for the max positive and negative springback. The results showed that the height of draw bead affects obviously the comprehensive springback of the panel. The optimization of the process parameters obtained by the orthogonal experiment can effectively reduce the max springback of the panel.


2021 ◽  
Vol 11 (21) ◽  
pp. 10496
Author(s):  
Yuntong Yang ◽  
Zhaoyu Jiang ◽  
Lianfu Han ◽  
Wancun Liu ◽  
Xingbin Liu ◽  
...  

As oil exploitation enters its middle and late stages, formation pressure drops, and crude oil degases. In production profile logging, the presence of the gas phase will affect the initial oil–water two-phase flowmeter’s flow measurement results. In order to eliminate gas-phase interference and reduce measurement costs, we designed a downhole gas–liquid separator (DGLS) suitable for low flow, high water holdup, and high gas holdup. We based it on the phase isolation method. Using a combination of numerical simulation and fluid dynamic measurement experiments, we studied DGLS separation efficiency separately in the two cases of gas–water two-phase flow and oil–gas–water three-phase flow. Comparative analysis of the numerical simulation calculation and dynamic test results showed that: the VOF model constructed based on k−ε the equation is nearly identical to the dynamic test, and can be used to analyze DGLS separation efficiency; the numerical simulation results of the gas–water two-phase flow show that when the total flow rate is below 20 m3/d, the separation efficiency surpasses 90%. The oil–gas–water three-phase’s numerical simulation results show that the oil phase influences separation efficiency. When the total flow rate is 20 m3/d–50 m3/d and gas holdup is low, the DGLS’s separation efficiency can exceed 90%. Our experimental study on fluid dynamics measurement shows that the DGLS’s applicable range is when the gas mass is 0 m3/d~15 m3/d, and the water holdup range is 50%~100%. The research presented in this article can provide a theoretical basis for the development and design of DGLSs.


Sign in / Sign up

Export Citation Format

Share Document