scholarly journals Numerical simulation and pressure drop prediction of slug flow in oil/gas pipelines

Author(s):  
Z. I. Al-Hashimy ◽  
H. H. Al-Kayiem ◽  
Z. K. Kadhim ◽  
A. O. Mohmmed
2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

1976 ◽  
Vol 54 (1-2) ◽  
pp. 111-114 ◽  
Author(s):  
Lambert Otten ◽  
Abdelrahman S. Fayed

2014 ◽  
Vol 535 ◽  
pp. 66-70
Author(s):  
Chen Hong Zhao ◽  
Yong Gang Lei

Heat transfer and resistance characteristics of a tube inserted delta-winglet (inclination angle is 10 °) are studied by numerical simulation. The results show that the delta-winglet enhance the heat transfer of the enhancement tube inserted delta-winglet and improve the PEC with modest pressure drop penalties. Compared with based tubes, the delta-wings structure enhance the heat transfer 19.52%-31%.


2021 ◽  
Author(s):  
Jing Yu ◽  
Cheng Hui ◽  
Chao Wen Sun ◽  
Zhan Ling Zou ◽  
Bin Lu Zhuo ◽  
...  

Abstract Hydrate-associated issues are of great significance to the oil and gas sector when advancing the development of offshore reservoir. Gas hydrate is easy to form under the condition featuring depressed temperature and elevated pressure within deep-water gas pipeline. Once hydrate deposition is formed within the pipelines, the energy transmission efficiency will be greatly reduced. An accurate prediction of hydrate-obstruction-development behavior will assist flow-assurance engineers to cultivate resource-conserving and environment-friendly strategies for managing hydrate. Based on the long-distance transportation characteristics of deep-water gas pipeline, a quantitative prediction method is expected to explain the hydrate-obstruction-formation behavior in deep-water gas pipeline throughout the production of deep-water gas well. Through a deep analysis of the features of hydrate shaping and precipitation at various locations inside the system, the advised method can quantitatively foresee the dangerous position and intensity of hydrate obstruction. The time from the start of production to the dramatic change of pressure drop brought about by the deposition of hydrate attached to the pipe wall is defined as the Hydrate Plugging Alarm Window (HPAW), which provides guidance for the subsequent hydrate treatment. Case study of deep-water gas pipeline constructed in the South China Sea is performed with the advised method. The simulation outcomes show that hydrates shape and deposit along pipe wall, constructing an endlessly and inconsistently developing hydrate layer, which restricts the pipe, raises the pressure drop, and ultimately leads to obstruction. At the area of 700m-3200m away from the pipeline inlet, the hydrate layer develops all the more swiftly, which points to the region of high risk of obstruction. As the gas-flow rate increases, the period needed for the system to shape hydrate obstruction becomes less. The narrower the internal diameter of the pipeline is, the more severe risk of hydrate obstruction will occur. The HPAW is 100 days under the case conditions. As the concentration of hydrate inhibitor rises, the region inside the system that tallies with the hydrate phase equilibrium conditions progressively reduces and the hydrate deposition rate slows down. The advised method will support operators to define the location of hydrate inhibitor injection within a shorter period in comparison to the conventional method. This work will deliver key instructions for locating the hydrate plugging position in a fast way in addition to solving the problem of hydrate flow assurance in deep-water gas pipelines at a reduced cost.


2021 ◽  
Vol 11 (21) ◽  
pp. 10496
Author(s):  
Yuntong Yang ◽  
Zhaoyu Jiang ◽  
Lianfu Han ◽  
Wancun Liu ◽  
Xingbin Liu ◽  
...  

As oil exploitation enters its middle and late stages, formation pressure drops, and crude oil degases. In production profile logging, the presence of the gas phase will affect the initial oil–water two-phase flowmeter’s flow measurement results. In order to eliminate gas-phase interference and reduce measurement costs, we designed a downhole gas–liquid separator (DGLS) suitable for low flow, high water holdup, and high gas holdup. We based it on the phase isolation method. Using a combination of numerical simulation and fluid dynamic measurement experiments, we studied DGLS separation efficiency separately in the two cases of gas–water two-phase flow and oil–gas–water three-phase flow. Comparative analysis of the numerical simulation calculation and dynamic test results showed that: the VOF model constructed based on k−ε the equation is nearly identical to the dynamic test, and can be used to analyze DGLS separation efficiency; the numerical simulation results of the gas–water two-phase flow show that when the total flow rate is below 20 m3/d, the separation efficiency surpasses 90%. The oil–gas–water three-phase’s numerical simulation results show that the oil phase influences separation efficiency. When the total flow rate is 20 m3/d–50 m3/d and gas holdup is low, the DGLS’s separation efficiency can exceed 90%. Our experimental study on fluid dynamics measurement shows that the DGLS’s applicable range is when the gas mass is 0 m3/d~15 m3/d, and the water holdup range is 50%~100%. The research presented in this article can provide a theoretical basis for the development and design of DGLSs.


2009 ◽  
Author(s):  
Fragiskos A. Batzias ◽  
Phillip-Mark P. Spanidis ◽  
George Maroulis ◽  
Theodore E. Simos

Sign in / Sign up

Export Citation Format

Share Document