Comparison of Factor of Safety of a Roadway Slope Based on the Limit Equilibrium Method and Shear Strength Reduction Method

Author(s):  
Tong Guo ◽  
Zhongming He
2012 ◽  
Vol 446-449 ◽  
pp. 1524-1530
Author(s):  
Ting Ai ◽  
Ru Zhang ◽  
Li Ren ◽  
Wen Xi Fu

In order to implement the non-linear Hoek-Brown (HB) shear strength reduction (SSR) on commercially available softwares, this paper derives the relationship between the Drucker-prager (DP) criterion and HB criterion under the condition of plane strain. The equivalent DP parameters can be approximately estimated after serious transformations of parameters between the HB and Mohr-Coulomb (MC) yield functions. To assess the effect of dilation on the stability of slope, the non-associated flow rule, which cannot be contained in the existing limit equilibrium methods, is selected in our analysis, and the SSR-based results of a simple slope indicate that: If the angle of dilatancy ψ is taken to be zero, the factor of safety calculated by the SSR method is very close to that by the limit equilibrium method; if ψ is greater than zero, the factor of safety calculated by the SSR method is greater than that by the limit equilibrium method, and the effect of dilation on the stability of slope can be approximately described by a liner function.


2012 ◽  
Vol 424-425 ◽  
pp. 1187-1190
Author(s):  
Yue Zhai ◽  
Kun Long Yin

With the anti-shear parameters reduction, the nonlinear strength reduction FEM model of slope turns to unstable status and the numerical non-convergence occurs simultaneously. Hence, the safety stability factor obtained based on c-φ reduction algorithm can be regarded as equal to stability factor obtained using limit equilibrium method. In this paper, stability analysis of one reservoir slope is made and the calculation results show that the strength reduction method matches the traditional grid limit equilibrium method well, yet with much more available information. Efficient and accurate, the strength reduction FEM is feasible to examine slope stability and analyze slope movement patterns.


2011 ◽  
Vol 243-249 ◽  
pp. 2690-2693
Author(s):  
Lin Yan Li ◽  
Yin Liu ◽  
Hao Chen ◽  
Heng Bin Wu

Present methods for stability analysis of underwater slopes are mostly confined to laboratory experiments and limit equilibrium method. This paper is based on strength reduction method, considering the deformation parameters of rock mass to discuss the stability of underwater slopes. Comparing the consequences, the sliding planes and safety factors agreed well with the result of limit equilibrium method. The applicability of strength reduction method for underwater slopes stability was well proved. When analyzing after changing the water depth, it was showed that there are more erosion effect induced and reduction for the parameters of rock mass, but little influence on the safety factor of underwater slopes.


2020 ◽  
Vol 198 ◽  
pp. 02027
Author(s):  
Ming-hui Gao ◽  
Jian-qing Zhao ◽  
Chao Sun ◽  
Xiao Wang ◽  
Qi-zhi Wang

In this paper, the slope with horizontal weak interlayer is taken as the research object, and the safety factor and the location of the failure surface of the slope are calculated by finite element strength reduction method and limit equilibrium method respectively. The results show that when the slope is mixed with soft layer, the positions of the critical failure surfaces calculated by the two methods are quite different, but their safety factors are relatively small. Which method is more accurate needs to be analyzed in combination with the specific conditions of the slope. Through comparative analysis, the calculation efficiency of limit equilibrium method is much higher than that of strength reduction method. The results of this paper provide reliable reference for engineering analysis.


Sign in / Sign up

Export Citation Format

Share Document