Non-Linear Hoek-Brown Shear Strength Reduction Technique Considering the Effect of Dilation

2012 ◽  
Vol 446-449 ◽  
pp. 1524-1530
Author(s):  
Ting Ai ◽  
Ru Zhang ◽  
Li Ren ◽  
Wen Xi Fu

In order to implement the non-linear Hoek-Brown (HB) shear strength reduction (SSR) on commercially available softwares, this paper derives the relationship between the Drucker-prager (DP) criterion and HB criterion under the condition of plane strain. The equivalent DP parameters can be approximately estimated after serious transformations of parameters between the HB and Mohr-Coulomb (MC) yield functions. To assess the effect of dilation on the stability of slope, the non-associated flow rule, which cannot be contained in the existing limit equilibrium methods, is selected in our analysis, and the SSR-based results of a simple slope indicate that: If the angle of dilatancy ψ is taken to be zero, the factor of safety calculated by the SSR method is very close to that by the limit equilibrium method; if ψ is greater than zero, the factor of safety calculated by the SSR method is greater than that by the limit equilibrium method, and the effect of dilation on the stability of slope can be approximately described by a liner function.

1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.


2011 ◽  
Vol 462-463 ◽  
pp. 42-47
Author(s):  
Xiao Li Liu ◽  
Jun Jie Yang

For numerical simulation, the shear strength reduction technique (SSRT) is often used to evaluate slope or landslide stability. According to numerical computation results of slopes or landslides analyzed by SSRT, it can be found that with increase of the shear strength reduction factor, some of the soil elements will yield gradually to form a connected plastic zone, which is the potential slip surface of the slope or landslide. In view of the plastic resistance of soils, formation of the connected plastic zone does not always indicate that the landslide is about to failure. Other auxiliary criterion is necessary to predict whether a slope or landslide is in a critical state or not. Here, difference of the incremental percent of horizontal displacement of the outcropping slip surface node is regarded as the auxiliary indicator to distinguish the critical state of slopes or landslides after formation of the potential slip surface. With the ideas mentioned above, stability of a fossil landslide, Xietan landslide has been analyzed for the natural and the long-term reservoir water level conditions. Factors of safety of Xietan landslide by the numerical method have been compared with that by the limit equilibrium method, which indicates that the method used here for evaluating stability of Xietan landslide is feasible. Because numerical method has more advantages over the limit equilibrium method, the approach for evaluating stability of landslide here can be applied to more complicated or three-dimensional landslides or slopes further.


2021 ◽  
Author(s):  
Tesfay Kiros Mebrahtu ◽  
Thomas Heinze ◽  
Stefan Wohnlich

<p>Landslides and ground failures are among the common geo-environmental hazards in many of the tectonically active hilly and mountainous terrains of Ethiopia, such as in the western margin of the Main Ethiopian Rift in Debre Sina area. Besides the geological preconditioning, bi-modal monsoon and seismic events in the tectonically highly active region are usually suspected triggers. In order to minimize the damage caused by the slope failure events, a detailed investigation of landslide-prone areas using numerical modelling plays a crucial role. The aim of this study is to assess the stability of slopes, to understand the relevant failure mechanisms, and to evaluate and compare safety factors calculated by the different available numerical methods. The stability was assessed for slopes of complex geometry and heterogeneous material using the limit equilibrium method and the shear strength reduction method based on finite elements. Furthermore, numerical analysis was done under static and pseudo-static loading using the horizontal seismic coefficient to model their stability during a seismic event. The slope stability analysis indicates that the studied slopes are unstable, and any small scale disturbance will further reduce the factor of safety and probably causing failure. The critical strength reduction factors from the finite element method are significantly lower than the factor of safety from the limit equilibrium method in all studied scenarios, such as Bishop, Janbu Simplified, Spencer and Morgenstern-Price. The difference is especially evident for heterogeneous slopes with joints, which often are initiation points for the failure planes. The simulations show that slope stability of landslide prone hills in the study area strongly depends on the saturation conditions and the seismic load. The studied slopes are initially close to failure and increased pore-pressure or seismic load are very likely triggers.</p>


2011 ◽  
Vol 243-249 ◽  
pp. 2690-2693
Author(s):  
Lin Yan Li ◽  
Yin Liu ◽  
Hao Chen ◽  
Heng Bin Wu

Present methods for stability analysis of underwater slopes are mostly confined to laboratory experiments and limit equilibrium method. This paper is based on strength reduction method, considering the deformation parameters of rock mass to discuss the stability of underwater slopes. Comparing the consequences, the sliding planes and safety factors agreed well with the result of limit equilibrium method. The applicability of strength reduction method for underwater slopes stability was well proved. When analyzing after changing the water depth, it was showed that there are more erosion effect induced and reduction for the parameters of rock mass, but little influence on the safety factor of underwater slopes.


2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2016 ◽  
Vol 857 ◽  
pp. 555-559 ◽  
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Kok Alfred Chee Jee ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri

Slope stability analysis is one of the ancient tasks in the geotechnical engineering. There are two major methods; limit equilibrium method (LEM) and finite element method (FEM) that were used to analyze the factor of safety (FOS) to determine the stability of slope. The factor of safety will affect the remediation method to be underdesign or overdesign if the analysis method was not well chosen. This can lead to safety and costing problems which are the main concern. Furthermore, there were no statement that issued one of the analysis methods was more preferred than another. To achieve the objective of this research, the soil sample collected from landslide at Wang Kelian were tested to obtain the parameters of the soils. Then, those results were inserted into Plaxis and Slope/W software for modeling to obtain the factor of safety based on different cases such as geometry and homogenous of slope. The FOS obtained by FEM was generally lower compared to LEM but LEM can provide an obvious critical slip surface. This can be explained by their principles. Overall, the analysis method chosen must be based on the purpose of the analysis.


Sign in / Sign up

Export Citation Format

Share Document