Comparison of Variable Parameter Muskingum-Cunge and Variable Parameter McCarthy-Muskingum Routing Methods

Author(s):  
Muthiah Perumal ◽  
Bhabagrahi Sahoo
2015 ◽  
Vol 523 ◽  
pp. 489-499 ◽  
Author(s):  
Basant Yadav ◽  
Muthiah Perumal ◽  
Andras Bardossy

2019 ◽  
Vol 4 (4) ◽  
pp. 102-107 ◽  
Author(s):  
Vaishnavi Kiran Patil ◽  
Vidya R. Saraf ◽  
Omkesh V. Karad ◽  
Swapnil B. Ghodke ◽  
Dnyanesvar Gore ◽  
...  

The Hydrologic Engineering Centers Hydrologic Modeling System (HEC-HMS) is a popularly used watershed model to simulate rainfall- runoff process. Hydrological modeling is a commonly used tool to estimate the basin’s hydrological response due to precipitation. It allows to predict the hydrologic response to various watershed management practices and to have a better understanding of the impacts of these practices. It is evident from the extensive review of the literature that the studies on comparative assessment of watershed models for hydrologic simulations are very much limited in developing countries including India. In this study, modified SCS Curve Number method is applied to determine loss model as a major component in rainfall-runoff modeling. The study of HEC-HMS model is used to simulate rainfallrunoff process in Nashik region (Upper Godavari basin), Maharashtra. To compute runoff volume, peak runoff rate, and flow routing methods SCS curve number, SCS unit hydrograph, Exponential recession and Muskingum routing methods are chosen, respectively. The results of the present study indicate that HEC-HMS tool applied to watershed proved to be useful in achieving the various objectives. The study confirmed a significant increase in runoff as a result of urbanization. It is a powerful tool for flood forecasting  Index


2021 ◽  
Author(s):  
Reyhaneh Akbari ◽  
Masoud-Reza Hessami-Kermani

Abstract The Muskingum routing model is favored by water engineers owing to its simplicity and accuracy. A large amount of research is done to improve the accuracy of the model. One way to do so is to consider variable hydrological parameters during the flood routing period. In this study, the random selection (RS) method was proposed to divide the flood period of the nonlinear Muskingum model into three sub-periods. The proposed method was based on RS of members in each sub-region. It was applied to rout three flood hydrographs, and the objective function was the sum of squared errors. Comparing the results from the three variable-parameter nonlinear Muskingum model with those from the variable-parameter nonlinear Muskingum models in previous studies, the proposed model optimized the objective function in these hydrographs up to 61%. The uncertainty analysis of Muskingum parameters for Wilson's hydrograph was performed by the fuzzy alpha cut method, and it was found that the uncertainty of the parameter x is greater than the uncertainty of the parameters k and m.


2018 ◽  
Vol 26 (4) ◽  
pp. 56-65
Author(s):  
Michaela Danáčová ◽  
Ján Szolgay

Abstract The Muskingum method is based on a linear relationship between a channel’s storage and inflow and outflow discharges. The applicability of using travel-time discharge relationships to model the variability of the K parameter in a Muskingum routing model was tested. The new parameter estimation method is based on the relationships between the traveltime parameter (K) and the input discharge for the reach of the Danube River between Devín-Bratislava and Medveďov, which includes the Gabčíkovo hydropower scheme. The variable parametrisation method was compared with the classical approach. The parameter X was taken as the average of its values from a small set of flood waves, K was estimated as a function of the travel-time parameter and discharge, which was optimized for one flood wave. The results were validated using the Nash-Sutcliffe coefficient on 5 floods. The results obtained by these methods were satisfactory and, with their use, one could reduce the amount of data required for calibration in practical applications.


2001 ◽  
Vol 29 (4) ◽  
pp. 258-268 ◽  
Author(s):  
G. Jianmin ◽  
R. Gall ◽  
W. Zuomin

Abstract A variable parameter model to study dynamic tire responses is presented. A modified device to measure terrain roughness is used to measure dynamic damping and stiffness characteristics of rolling tires. The device was used to examine the dynamic behavior of a tire in the speed range from 0 to 10 km/h. The inflation pressure during the tests was adjusted to 160, 240, and 320 kPa. The vertical load was 5.2 kN. The results indicate that the damping and stiffness decrease with velocity. Regression formulas for the non-linear experimental damping and stiffness are obtained. These results can be used as input parameters for vehicle simulation to evaluate the vehicle's driving and comfort performance in the medium-low frequency range (0–100 Hz). This way it can be important for tire design and the forecasting of the dynamic behavior of tires.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Laixi Zhang ◽  
Chenming Zhao ◽  
Feng Qian ◽  
Jaspreet Singh Dhupia ◽  
Mingliang Wu

Vibrations in the aircraft assembly building will affect the precision of the robotic drilling system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the parallel connection of four vertically arranged bearing springs and two symmetrical horizontally arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance method is used to deal with the differential equations of motion. The effects of every parameter on the displacement transmissibility are analyzed, and the variable parameter control strategies are proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms to the segmental variable frequency excitations are compared through virtual prototype experiments. The results show that the frequency range of vibration isolation is widened, and the stability of the vibration control system is effectively improved without resonance through the semiactive vibration control method. It is of innovative significance for ambient vibration control in robotic drilling systems.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 570
Author(s):  
Olga Sánchez ◽  
Manuel Hernández-Vélez

ZnOTe compounds were grown by DC magnetron cosputtering from pure Tellurium (Te) and Zinc (Zn) cathodes in O2/Ar atmosphere. The applied power on the Zn target was constant equal to 100 W, while the one applied on the Te target took two values, i.e., 5 W and 10 W. Thus, two sample series were obtained in which the variable parameter was the distance from the Te targets to the substrate. Sample compositions were determined by Rutherford Backscattering Spectroscopy (RBS) experiments. Structural analysis was done using X-Ray diffraction (XRD) spectrometry and the growth of the hexagonal w-ZnO phase was identified in the XRD spectra. RBS results showed high bulk homogeneity of the samples forming ZnOTe alloys, with variable Te molar fraction (MF) ranging from 0.48–0.6% and from 1.9–3.1% for the sample series obtained at 5 W and 10 W, respectively. The results reflect great differences between the two sample series, particularly from the structural and optical point of view. These experiments point to the possibility of Te doping ZnO with the permanence of intrinsic defects, as well as the possibility of the formation of other Te solid phases when its content increases. The results and appreciable variations in the band gap transitions were detected from Photoluminescence (PL) measurements.


Sign in / Sign up

Export Citation Format

Share Document