Use of Radar Rainfall Data in Hydrologic Modeling

1990 ◽  
Vol 95 (D3) ◽  
pp. 2143 ◽  
Author(s):  
Jonathan Wyss ◽  
Earle R. Williams ◽  
Rafael L. Bras

Author(s):  
David C. Curtis

Successful hydrologic modeling depends heavily on high-quality rainfall data sets. If hydrologists cannot determine what is coming into a watershed, there is little chance that any hydrologic model will accurately estimate what is coming out on a consistent basis. Hydrologists are frequently forced to use rainfall data sets derived from sparse rain gauge networks that poorly resolve critical rainfall features, leading to inadequate model results. Over the past several years, the modernizing National Weather Service, the Federal Aviation Administration, and the Department of Defense have installed a new nationwide network of weather radars, providing a rich suite of real-time meteorological observations. Radar rainfall estimates from the new radars cover vast areas at a spatial and temporal resolution that would be impossibly expensive to match with a conventional rain gauge network. Hydrologists can now literally see between the gauges and view truer representations of the spatial distribution of rainfall than ever before. Results from the analysis of the January 9-10, 1995, storms in Sacramento, California, show that gauge-adjusted radar rainfall estimates help resolve rainfall features that could not have been inferred from rain gauge analysis alone. Accurate estimates of the volume, timing, and distribution of rainfall helped create excellent modeling results. In Waco, Texas, radar rainfall estimates were used to improve the analysis of excess inflow and infiltration into city storm sewers. The radar rainfall analyses enabled modelers to account for inflow/infiltration variations down to the neighborhood level.


2006 ◽  
Vol 1 (1) ◽  
Author(s):  
K. Katayama ◽  
K. Kimijima ◽  
O. Yamanaka ◽  
A. Nagaiwa ◽  
Y. Ono

This paper proposes a method of stormwater inflow prediction using radar rainfall data as the input of the prediction model constructed by system identification. The aim of the proposal is to construct a compact system by reducing the dimension of the input data. In this paper, Principal Component Analysis (PCA), which is widely used as a statistical method for data analysis and compression, is applied to pre-processing radar rainfall data. Then we evaluate the proposed method using the radar rainfall data and the inflow data acquired in a certain combined sewer system. This study reveals that a few principal components of radar rainfall data can be appropriate as the input variables to storm water inflow prediction model. Consequently, we have established a procedure for the stormwater prediction method using a few principal components of radar rainfall data.


2013 ◽  
Vol 52 (4) ◽  
pp. 802-818 ◽  
Author(s):  
Seong-Sim Yoon ◽  
Deg-Hyo Bae

AbstractMore than 70% of South Korea has mountainous terrain, which leads to significant spatiotemporal variability of rainfall. The country is exposed to the risk of flash floods owing to orographic rainfall. Rainfall observations are important in mountainous regions because flood control measures depend strongly on rainfall data. In particular, radar rainfall data are useful in these regions because of the limitations of rain gauges. However, radar rainfall data include errors despite the development of improved estimation techniques for their calculation. Further, the radar does not provide accurate data during heavy rainfall in mountainous areas. This study presents a radar rainfall adjustment method that considers the elevation in mountainous regions. Gauge rainfall and radar rainfall field data are modified by using standardized ordinary cokriging considering the elevation, and the conditional merging technique is used for combining the two types of data. For evaluating the proposed technique, the Han River basin was selected; a high correlation between rainfall and elevation can be seen in this basin. Further, the proposed technique was compared with the mean field bias and original conditional merging techniques. Comparison with kriged rainfall showed that the proposed method has a lesser tendency to oversmooth the rainfall distribution when compared with the other methods, and the optimal mean areal rainfall is very similar to the value obtained using gauges. It reveals that the proposed method can be applied to an area with significantly varying elevation, such as the Han River basin, to obtain radar rainfall data of high accuracy.


2008 ◽  
Vol 41 (11) ◽  
pp. 1153-1162 ◽  
Author(s):  
Won-Il Kim ◽  
Kyoung-Doo Oh ◽  
Won-Sik Ahn ◽  
Byong-Ho Jun

2011 ◽  
Vol 138 (663) ◽  
pp. 340-352 ◽  
Author(s):  
George C. Craig ◽  
Christian Keil ◽  
Daniel Leuenberger

Sign in / Sign up

Export Citation Format

Share Document