Many deck-on-pile structures are located in shallow water depths at elevations low enough to be inundated by large waves during intense storms or tsunami. Many researchers have studied wave-in-deck loads over the past decade using a variety of theoretical, experimental, and numerical methods. Wave-in-deck loads on various pile supported coastal structures such as jetties, piers, wharves and bridges have been studied by Tirindelli et al. (2003), Cuomo et al. (2007, 2009), Murali et al. (2009), and Meng et al. (2010). All these authors analyzed data from scale model tests to investigate the pressures and loads on beam and deck elements subject to wave impact under various conditions. Wavein- deck loads on fixed offshore structures have been studied by Murray et al. (1997), Finnigan et al. (1997), Bea et al. (1999, 2001), Baarholm et al. (2004, 2009), and Raaij et al. (2007). These authors have studied both simplified and realistic deck structures using a mixture of theoretical analysis and model tests. Other researchers, including Kendon et al. (2010), Schellin et al. (2009), Lande et al. (2011) and Wemmenhove et al. (2011) have demonstrated that various CFD methods can be used to simulate the interaction of extreme waves with both simple and more realistic deck structures, and predict wave-in-deck pressures and loads.