What Can We Learn from Kappa (κ) to Achieve a Better Characterization of Damping in Geotechnical Site Response Models?

Author(s):  
Ashly Cabas ◽  
Adrian Rodriguez-Marek
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas A. Johnson ◽  
Ville Paakinaho ◽  
Sohyoung Kim ◽  
Gordon L. Hager ◽  
Diego M. Presman

AbstractA widely regarded model for glucocorticoid receptor (GR) action postulates that dimeric binding to DNA regulates unfavorable metabolic pathways while monomeric receptor binding promotes repressive gene responses related to its anti-inflammatory effects. This model has been built upon the characterization of the GRdim mutant, reported to be incapable of DNA binding and dimerization. Although quantitative live-cell imaging data shows GRdim as mostly dimeric, genomic studies based on recovery of enriched half-site response elements suggest monomeric engagement on DNA. Here, we perform genome-wide studies on GRdim and a constitutively monomeric mutant. Our results show that impairing dimerization affects binding even to open chromatin. We also find that GRdim does not exclusively bind half-response elements. Our results do not support a physiological role for monomeric GR and are consistent with a common mode of receptor binding via higher order structures that drives both the activating and repressive actions of glucocorticoids.


2001 ◽  
Vol 47 (159) ◽  
pp. 659-664 ◽  
Author(s):  
W. D. Harrison ◽  
D. H. Elsberg ◽  
K. A. Echelmeyer ◽  
R. M. Krimmel

AbstractGlacier response to climate can be characterized by a single time-scale when the glacier changes sufficiently slowly. Then the derivative of volume with respect to area defines a thickness scale similar to that of Jóhannesson and others, and the time-scale follows from it. Our version of the time-scale is different from theirs because it explicitly includes the effect of surface elevation on mass-balance rate, which can cause a major increase in the time-scale or even lead to unstable response. The time constant has a dual role, controlling both the rate and magnitude of response to a given climate change. Data from South Cascade Glacier, Washington, U.S.A., illustrate the ideas, some of the difficulty in obtaining accurate values for the thickness and time-scales, and the susceptibility of all response models to potentially large errors.


2018 ◽  
Vol 34 (4) ◽  
pp. 1973-1993 ◽  
Author(s):  
On Lei Annie Kwok ◽  
Jonathan P. Stewart ◽  
Dong Youp Kwak ◽  
Pang-Li Sun

Ergodic site response models are generally conditional on the time-averaged shear wave velocity in the upper 30 m ( V S30). Ground motion databases contain many recordings from Taiwan, and because of site characterization efforts, 56% of recording sites have V S30 derived from measurements. We develop proxy-based V S30 prediction models, one application of which is for the remaining 44% of Taiwan sites. Our approach, which can be suitable for other regions, differs from previous studies in which proxies are based on detailed geologic categories and possible within-category topographic gradient effects. Instead, we use three broad, age-based geologic categories, and for the youngest category of Holocene and Quaternary undivided sediments, we propose models conditioned on gradient and elevation. We also adapt a geomorphic terrain-based method, thus providing two V S30-prediction models. We describe a model weighting scheme that combines the models in consideration of their relative dispersions and correlation, producing a weighted mean and standard deviation natural-log V S30. Included as an electronic supplement is a profile database file and a site database with site parameters for Taiwan ground motion stations.


Author(s):  
James N. Dismuke

Simplified procedures for evaluating liquefaction triggering potential use the nonlinear shear stress reduction factor, rd, to estimate the peak earthquake-induced cyclic shear stress within the soil strata. Previous studies have derived rd by considering the response of representative ground profiles subjected to input ground motions with a range of ground motion characteristics. In this study, site–specific rd for serviceability limit state (SLS) and ultimate limit state (ULS) design ground motions are developed using site response models of the Christchurch Central Business District (CBD). The site response models are generated for typical geologic conditions of Christchurch CBD with shear wave velocity, Vs, profiles developed from the results of multichannel analysis of surface waves (MASW) surveys conducted across Christchurch CBD. A total of 528 simulations were conducted using 1D nonlinear time domain site response analyses using a suite of input ground motions that are representative of controlling ground motion scenarios for seismic hazard of Christchurch. The results of the ground response analyses are used to determine Christchurch CBD-specific rd relationships for liquefaction triggering assessments. The proposed relationships provide a better estimate of the cyclic stress ratios induced below Christchurch CBD when subjected to design SLS and ULS ground motions as compared to typical practice using generic liquefaction assessment methodologies.


2019 ◽  
pp. 122315EQS188M
Author(s):  
Ashly Cabas ◽  
Adrian Rodriguez-Marek

Input motions used in seismic site response analyses are commonly selected based on similarities between the shear wave velocity (Vs) at the recording station, and the reference depth at the site of interest (among other aspects such as the intensity of the expected ground motion). This traditional approach disregards the influence of the attenuation in the shallow crust on site response. Given that this attenuation (damping) can be characterized by the distance-independent high-frequency attenuation parameter 0, a Vs-0 correction framework for input motions is proposed to render them compatible with the assumed properties of the reference depth at the site. The proposed correction factors were applied to a subset of recordings from the KiK-net database, and compared to traditional deconvolution. Results indicate that Vs-0 corrected motions outperform deconvolved motions in the characterization of the spectral energy in the high-frequency range. However, motions recorded at sites with soft deposits are not good candidates for the Vs-0 correction approach. Vs-0 corrections also affect amplification functions which are important in the assessment of site-specific seismic hazards.


2012 ◽  
Vol 28 (3) ◽  
pp. 859-883 ◽  
Author(s):  
Dominic Assimaki ◽  
Wei Li ◽  
Michalis Fragiadakis

We study how the inelastic structural response predicted via synthetic seismograms is affected by the selection of site response models in ground motion simulations. We first generate synthetics for multiple scenarios and site conditions in Southern California using attenuation relations, site specific linear, vis-coelastic and nonlinear analyses, and estimate the ground motion variability that results from the soil model selection. We next use bilinear single degree-of-freedom oscillators to demonstrate how this variability propagates to the inelastic structural response predictions. Results show high bias and scatter of the inelastic displacement ratio predicted using the empirical and linear elastic site response models relative to the nonlinear, for periods close to the fundamental period of the site. For the synthetic motions and sites used, we derive empirical correlations between the amount of bias and period range where it manifests, and selected input motion and site parameters.


2020 ◽  
Vol 110 (6) ◽  
pp. 2953-2966
Author(s):  
Almog Baram ◽  
Gony Yagoda-Biran ◽  
Ronnie Kamai

ABSTRACT Three alternative site-response models are developed, using two complementing predictors, accounting for both stiffness and depth effects. The analysis is based on a large database of velocity profiles and their associated calculated amplifications with respect to the local generic rock profile. The frequency of peak amplification—fpeak—is chosen to supplement VS30, after considering the predictability of eight different site proxies. The suggested models are continuous in terms of spectral periods as well as in terms of their predictor parameters—VS30 and fpeak. Model performance is evaluated in terms of the reduction in variability. For example, for a spectral period of T=0.5  s, using either one of the suggested models reduces the amplification variability from 0.4 to 0.18, whereas using VS30 alone reduces it only to 0.24. This improvement suggests that the addition of fpeak is a significant improvement in the midperiod range.


2017 ◽  
Vol 33 (3) ◽  
pp. 917-941 ◽  
Author(s):  
Ashly Cabas ◽  
Adrian Rodriguez-Marek

Input motions used in seismic site response analyses are commonly selected based on similarities between the shear wave velocity ( V S) at the recording station, and the reference depth at the site of interest (among other aspects such as the intensity of the expected ground motion). This traditional approach disregards the influence of the attenuation in the shallow crust on site response. Given that this attenuation (damping) can be characterized by the distance-independent high-frequency attenuation parameter κ0, a V S -κ0 correction framework for input motions is proposed to render them compatible with the assumed properties of the reference depth at the site. The proposed correction factors were applied to a subset of recordings from the KiK-net database, and compared to traditional deconvolution. Results indicate that V S -κ0 corrected motions outperform deconvolved motions in the characterization of the spectral energy in the high-frequency range. However, motions recorded at sites with soft deposits are not good candidates for the V S -κ0 correction approach. V S -κ0 corrections also affect amplification functions which are important in the assessment of site-specific seismic hazards.


2011 ◽  
Vol 27 (1_suppl1) ◽  
pp. 137-155 ◽  
Author(s):  
Susan E. Hough ◽  
Alan Yong ◽  
Jean Robert Altidor ◽  
Dieuseul Anglade ◽  
Doug Given ◽  
...  

Waveform analysis of aftershocks of the Mw7.0 Haiti earthquake of 12 January 2010 reveals amplification of ground motions at sites within the Cul de Sac valley in which Port-au-Prince is situated. Relative to ground motions recorded at a hard-rock reference site, peak acceleration values are amplified by a factor of approximately 1.8 at sites on low-lying Mio-Pliocene deposits in central Port-au-Prince and by a factor of approximately 2.5–3 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplitude, predominant periods, variability, and polarization of amplification are consistent with predicted topographic amplification by a steep, narrow ridge. A swath of unusually high damage in this region corresponds with the extent of the ridge where high weak-motion amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to map local geomorphology, including characterization of both near-surface and of small-scale topographic structures that correspond to zones of inferred amplification.


Sign in / Sign up

Export Citation Format

Share Document