Quality of Time-Dependent Data Segments of Experiments on Thermal Sensation Using Immersive Virtual Environments

ICCREM 2020 ◽  
2020 ◽  
Author(s):  
Girish Srivatsa Rentala ◽  
Yimin Zhu
2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Aila Kronqvist ◽  
Jussi Jokinen ◽  
Rebekah Rousi

Immersive virtual environments (VEs) have the potential to provide novel cost effective ways for evaluating not only new environments and usability scenarios, but also potential user experiences. To achieve this, VEs must be adequately realistic. The level of perceived authenticity can be ascertained by measuring the levels of immersion people experience in their VE interactions. In this paper the degree of authenticity is measured via anauthenticity indexin relation to three different immersive virtual environment devices. These devices include (1) a headband, (2) 3D glasses, and (3) a head-mounted display (HMD). A quick scale for measuring immersion, feeling of control, and simulator sickness was developed and tested. The HMD proved to be the most immersive device, although the headband was demonstrated as being a more stable environment causing the least simulator sickness. The results have design implication as they provide insight into specific factors which make experience in a VE seem more authentic to users. The paper emphasizes that, in addition to the quality of the VE, focus needs to be placed on ergonomic factors such as the weight of the devices, as these may compromise the quality of results obtained when examining studying human-technology interaction in a VE.


2021 ◽  
Vol 13 (19) ◽  
pp. 10638
Author(s):  
Girish Rentala ◽  
Yimin Zhu ◽  
Neil M. Johannsen

Recent studies have established immersive virtual environments (IVEs) as promising tools for studying human thermal states and human–building interactions. One advantage of using immersive virtual environments is that experiments or data collection can be conducted at any time of the year. However, previous studies have confirmed the potential impact of outdoor temperature variations, such as seasonal variations on human thermal sensation. To the best of our knowledge, no study has looked into the potential impact of variations in outdoor temperatures on experiments using IVE. Thus, this study aimed to determine if different outdoor temperature conditions affected the thermal states in experiments using IVEs. Experiments were conducted using a head mounted display (HMD) in a climate chamber, and the data was analyzed under three temperature ranges. A total of seventy-two people participated in the experiments conducted in two contrasting outdoor temperature conditions, i.e., cold and warm outdoor conditions. The in situ experiments conducted in two cases, i.e., cooling in warm outdoor conditions and heating in cold outdoor conditions, were used as a baseline. The baseline in-situ experiments were then compared with the IVE experiments conducted in four cases, i.e., cooling in warm and cold outdoor conditions and heating in warm and cold outdoor conditions. The selection of cooling in cold outdoor conditions and heating in warm outdoor conditions for IVE experiments is particularly for studying the impact of outdoor temperature variations. Results showed that under the experimental and outdoor temperature conditions, outdoor temperature variations in most cases did not impact the results of IVE experiments, i.e., IVE experiments can replicate a temperature environment for participants compared to the ones in the in situ experiments. In addition, the participant’s thermal sensation vote was found to be a reliable indicator between IVE and in situ settings in all studied conditions. A few significantly different cases were related to thermal comfort, thermal acceptability, and overall skin temperature.


2019 ◽  
Vol 31 (2) ◽  
pp. 208-220 ◽  
Author(s):  
Javier Marín-Morales ◽  
Juan Luis Higuera-Trujillo ◽  
Carla De-Juan-Ripoll ◽  
Carmen Llinares ◽  
Jaime Guixeres ◽  
...  

Abstract The validity of environmental simulations depends on their capacity to replicate responses produced in physical environments. However, very few studies validate navigation differences in immersive virtual environments, even though these can radically condition space perception and therefore alter the various evoked responses. The objective of this paper is to validate environmental simulations using 3D environments and head-mounted display devices, at behavioural level through navigation. A comparison is undertaken between the free exploration of an art exhibition in a physical museum and a simulation of the same experience. As a first perception validation, the virtual museum shows a high degree of presence. Movement patterns in both ‘museums’ show close similarities, and present significant differences at the beginning of the exploration in terms of the percentage of area explored and the time taken to undertake the tours. Therefore, the results show there are significant time-dependent differences in navigation patterns during the first 2 minutes of the tours. Subsequently, there are no significant differences in navigation in physical and virtual museums. These findings support the use of immersive virtual environments as empirical tools in human behavioural research at navigation level. Research highlights The latest generation HMDs show a high degree of presence. There are significant differences in navigation patterns during the first 2 minutes of a tour. Adaptation time need to be considered in future research. Training rooms need to be realistic, to avoid the ‘wow’ effect in the main experiment. Results support the use of Virtual Reality and the latest HMDs as empirical tools in human behavioural research at navigation level.


Author(s):  
S. G. Grigoriev ◽  
M. V. Kurnosenko ◽  
A. M. Kostyuk

The article discusses possible forms of educational STEM projects in the field of electronics and device control using Arduino controllers. As you know, the implementation of such STEM projects can be carried out not only using various electronic constructors, but also using virtual modeling environments. The knowledge obtained during modeling in virtual environments makes it possible to increase the efficiency of face-to-face practical training with a real constructor, and to improve the quality of students’ knowledge. The use of virtual modeling environments in combination with the use of real constructors provides links between distance and full-time learning. A real constructors can be used simultaneously by both the teacher and the student, jointly practicing the features of solving practical problems. The article provides examples of using a virtual environment for preliminary prototyping of circuits available in the documentation for electronic constructors, to familiarize students with the basics of designing and assembling electronic circuits using the surface mounting method and on a breadboard, as well as programming controllers on the Arduino platform that control electronic devices. This approach allows students to accelerate the assimilation of various interdisciplinary knowledge in the field of natural sciences using STEM design.


2016 ◽  
Author(s):  
Joshua Joseph Cogliati ◽  
Jun Chen ◽  
Japan Ketan Patel ◽  
Diego Mandelli ◽  
Daniel Patrick Maljovec ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 326
Author(s):  
Wiwik Budiawan ◽  
Kazuyo Tsuzuki

Thermal comfort is crucial in satisfaction and maintaining quality sleep for occupants. In this study, we investigated the comfort temperature in the bedroom at night and sleep quality for Indonesian students during summer and winter. Eighteen male Indonesian students aged 29 ± 4 years participated in this study. The participants had stayed in Japan for about six months. We evaluated the sleep parameters using actigraphy performed during summer and winter. All participants completed the survey regarding thermal sensation, physical conditions, and subjective sleepiness before sleep. The temperature and relative humidity of participants’ bedrooms were also measured. We found that the duration on the bed during winter was significantly longer than that during summer. However, sleeping efficiency during winter was significantly worse than that during summer. The bedroom temperature of the participants was in the range of comfort temperature in Indonesia. With the average bedroom air temperature of 22.2 °C, most of the participants still preferred “warm” and felt “slightly comfortable” during winter. The average comfort temperature each season calculated using the Griffiths method was 28.1 °C during summer and 23.5 °C during winter. In conclusion, differences in adaptive action affect bedroom thermal conditions. Furthermore, habits encourage the sleep performance of Indonesian students.


Sign in / Sign up

Export Citation Format

Share Document