Changes in the Coastal Morphology of Vrachati, Greece

Author(s):  
C.I. Moutzouris ◽  
A.J. Rogan
Keyword(s):  
1995 ◽  
Vol 32 (2) ◽  
pp. 77-83
Author(s):  
Y. Yüksel ◽  
D. Maktav ◽  
S. Kapdasli

Submarine pipelines must be designed to resist wave and current induced hydrodynamic forces especially in and near the surf zone. They are buried as protection against forces in the surf zone, however this procedure is not always feasible particularly on a movable sea bed. For this reason the characteristics of the sediment transport on the construction site of beaches should be investigated. In this investigation, the application of the remote sensing method is introduced in order to determine and observe the coastal morphology, so that submarine pipelines may be protected against undesirable seabed movement.


2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Yoshimichi Yamamoto

Sediment-collecting in rivers and seas to secure a large amount of aggregate reduces the supply of earth and sand to coasts [...]


Geomorphology ◽  
2000 ◽  
Vol 34 (1-2) ◽  
pp. 73-88 ◽  
Author(s):  
P.G Sanderson ◽  
I Eliot ◽  
B Hegge ◽  
S Maxwell

Author(s):  
Ramy Y. Marmoush ◽  
Ryan P. Mulligan

Waves during major storms can cause significant changes to coastal morphology (Lee et al., 1998). The beach-dune system is known to be highly vulnerable to erosion when the wave run-up exceeds the threshold of the base of the dune in the collision regime, according to the Storm Impact scale defined by Sallenger (2000). Detailed bathymetric measurements are very difficult to obtain during storms due to the hazardous wave conditions. However, bathymetric surveys can be easily and intermittently performed during smaller scale physical model experiments (e.g., Hamilton et al., 2001) and high resolution can be achieved using laser scanning with Light Detection and Ranging (LIDAR) sensors (Smith et al., 2017). In the present study, a laboratory experiment of beach-dune morphology change is conducted in a rectangular wave basin that has recently been used to simulate erosion of a 2-dimensional sand dune (Berard et al., 2017). The objective of the present study is to investigate the 3-dimensional morphologic response of a sand beach-dune system to storm waves approaching at an oblique angle.


2017 ◽  
Vol 43 (1) ◽  
pp. 453 ◽  
Author(s):  
N.D Mourtzas

Sea level changes during the Upper Holocene submerged the coasts of Kea in three different phases about 5.50m, 3.90m and 1.50m respectively below the contemporary sea level thus causing sea transgression along the shores of Kea, which varied from 8m to 78m depending on the coastal morphology. These changes caused the alteration of the earlier morphology at coastal archaeological sites of the Island, as the prehistoric settlement of Ayia Irini and Classical period port of Karthaia, as well as, submerged under the sea areas of coastal human activity during antiquity, as the ancient schist quarry at Spathi bay. The study of historical, geomorphological and sedimentological data indicative of previous sea levels allow the paleogeographical reconstruction of the coasts during the period of human activities in these areas.


Author(s):  
Allison Penko ◽  
Erick Rogers ◽  
Joseph Calantoni

The existence and evolution of bedforms on the seafloor have significant effects in the areas of oceanography, marine geophysics, and underwater acoustics including the transport of sediment, wave energy attenuation, and seabed sonar scattering and penetration. Here, we present a wave-seafloor modeling system that couples a spectral seafloor boundary layer model (NSEA) with an operational wave model (SWAN) that includes the dynamic feedback between the predicted wave spectra and the wave generated bedforms on the seafloor through a bottom roughness parameter. NSEA is a seafloor spectral model that uses hydrodynamic input forcing forecasted by the wave model SWAN to predict the evolving seafloor spectra given a sediment grain diameter and an estimation of the biologic activity. The system can be used to determine the spatially and temporally varying bottom roughness under given wave forcing important for coastal morphology and acoustic applications.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/u66k6lZbEbw


Sign in / Sign up

Export Citation Format

Share Document