Wave, Turbulent and Mean Momentum Fluxes Across the Breaking Wave Transition Region in the Surf Zone

Author(s):  
R. J. Thieke
1986 ◽  
Vol 1 (20) ◽  
pp. 72 ◽  
Author(s):  
David R. Basco ◽  
Takao Yamashita

Breaking waves undergo a transition from oscillatory, irrotational motion, to highly rotational (turbulent) motion with some particle translation. On plane or monotonically decreasing beach profiles, this physically takes place in such a way that the mean water level remains essentially constant within the transition region. Further shoreward a rapid set-up takes place within the inner, bore-like region. The new surf zone model of Svendsen (1984) begins at this transition point and the new wave there contains a trapped volume of water within the surface roller moving with the wave speed. This paper describes a simple model over the transition zone designed to match the Svendsen (1984) model at the end of the transition region. It uses a simple, linear growth model for the surface roller area development and semi-empirical model for the variation of the wave shape factor. Breaking wave type can vary from spilling through plunging as given by a surf similarity parameter. The model calculates the wave height decrease and width of the transition region for all breaker types on plane or monotonically depth decreasing beaches.


1996 ◽  
Vol 3 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Th. V. Karambas

Abstract. Breaking wave energy in the surf zone is modelled through the incorporation of the time dependent energy balance equation in a non linear dispersive wave propagation model. The energy equations solved simultaneously with the momentum and continuity equation. Turbulence effects and the non uniform horizontal velocity distribution due to breaking is introduced in both the energy and momentum equations. The dissipation term is a function of the velocity defect derived from a turbulent analysis. The resulting system predicts both wave characteristics (surface elevation and velocity) and the energy distribution inside surf zone. The model is validated against experimental data and analytical expressions.


2020 ◽  
Author(s):  
Diana De Padova ◽  
Michele Mossa

Turbulence and undertow currents play an important role in surf-zone mixing and transport processes; therefore, their study is fundamental for the understanding of nearshore dynamics and the related planning and management of coastal engineering activities. Pioneering studies qualitatively described the features of breakers in the outer region of the surf zone. More detailed information on the velocity field under spilling and plunging breakers can be found in experimental works, where single-point measurement techniques, such as Hot Wire Anemometry and Laser Doppler Anemometry (LDA), were used to provide maps of the flow field in a time-averaged or ensemble-averaged sense. Moreover, the advent of non-intrusive measuring techniques, such as Particle Image Velocimetry (PIV) provided accurate and detailed instantaneous spatial maps of the flow field. However, by correlating spatial gradients of the measured velocity components, the instantaneous vorticity maps could be deduced. Moreover, the difficulties of measuring velocity due to the existence of air bubbles entrained by the plunging jet have hindered many experimental studies on wave breaking encouraging the development of numerical model as useful tool to assisting in the interpretation and even the discovery of new phenomena. Therefore, the development of an WCSPH method using the RANS equations coupled with a two-equation k–ε model for turbulent stresses has been employed to study of the turbulence and vorticity distributions in in the breaking region observing that these two aspects greatly influence many coastal processes, such as undertow currents, sediment transport and action on maritime structures.


1970 ◽  
Vol 1 (12) ◽  
pp. 25 ◽  
Author(s):  
J. Ian Collins

Utilizing the hydrodynamic relationships for shoaling and refraction of waves approaching a shoreline over parallel bottom contours a procedure is developed to transform an arbitrary probability density of wave characteristics in deep water into the corresponding breaking characteristics in shallow Water A number of probability distributions for breaking wave characteristics are derived m terms of assumed deep water probability densities of wave heights wave lengths and angles of approach Some probability densities for wave heights at specific locations in the surf zone are computed for a Rayleigh distribution in deep water The probability computations are used to derive the expectation of energy flux and its distribution.


2018 ◽  
Vol 5 (1) ◽  
pp. 119
Author(s):  
Karina Santoso ◽  
I Dewa Nyoman Nurweda Putra ◽  
I Gusti Bagus Sila Dharma

Bali is one of the islands where there are many surf zones with various characteristics. In addition, Bali is also a heaven with a classy wave for the surfers of the world. One of the most challenging places to surf in Bali is Uluwatu Beach. Uluwatu Beach is ranked the 3rd best surf spot in the world version of CNN Travel in 2012. Wind causes sea waves, therefore wind data can be used to estimate the height and direction of the waves. Wave Hindcasting with Sverdrup, Munk and Bretschneider (SMB) method is calculated based on wind data for 10 years (2001 - 2010) from BMKG Ngurah Rai Station - Denpasar to obtain a significant wave height and period. In this research, it is necessary to approach through Hindcasting procedure, wave transformation analysis and surfing Terminology in determining the type of breaking wave and classification of surf zone in Uluwatu Beach area. Wave calculation result in Uluwatu Beach dominated by wave that coming from west side with significant wave height (Hs) of 0.98 m and significant wave period (Ts) of 5.21 s. The wave height due to the influence of wave refraction and shoaling is 0.976 m. The breaking wave height obtained from the calculation is 1.04 m at a depth of 0.849 m. From the result in this research, it can be concluded that the breaking wave type that occurred at Uluwatu Beach is plunging type according to the calculation result from its Irribaren number (0.4 <Ni <2.3). The classification of the surf zone at Uluwatu Beach based on its breakup type of wave is thought to be a good zone for surfers on intermediate level.


1974 ◽  
Vol 1 (14) ◽  
pp. 45 ◽  
Author(s):  
Ole Secher Madsen

The possible effect on the stability of a porous sand bed of the flow induced within the bed during the passage of near-breaking or breaking waves is considered. It is found that the horizontal flow rather than the vertical flow within the bed may affect its stability. An approximate analysis, used in geotechnical computations of slope stability, indicates that a momentary bed failure is likely to occur during the passage of the steep front slope of a near-breaking wave. Experimental results for the pressure gradient along the bottom under near-breaking waves are presented. These results indicate that the pressure gradient is indeed of sufficient magnitude to cause the momentary failure suggested by the theoretical analysis. The loss of stability of the bed material due to the flow induced within the bed itself may affect the amount of material set in motion during the passage of a near-breaking or breaking wave, in particular, in model tests employing light weight bed material. The failure mechanism considered here is also used as the basis for a hypothesis for the depth of disturbance of the bed in the surf zone. The flow induced in a porous bed is concluded to be an important mechanism which should be considered when dealing with the wave-sediment interaction in the surf zone.


2016 ◽  
Vol 858 ◽  
pp. 354-358
Author(s):  
Tao You ◽  
Li Ping Zhao ◽  
Zheng Xiao ◽  
Lun Chao Huang ◽  
Xiao Rui Han

Within the surf zone which is the region extending from the seaward boundary of wave breaking to the limit of wave uprush, breaking waves are the dominant hydrodynamics acting as the key role for sediment transport and beach profile change. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave transformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and set down and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height variation caused by the wave breaking and the bottom friction, and about the wave breaking criterion under regular and irregular breaking waves. Flume experiments relating to the regular and irregular breaking wave height distribution across the surf zone were conducted to verify the theoretical model. The agreement is good between the theoretical and experimental results.


2010 ◽  
Vol 644 ◽  
pp. 193-216 ◽  
Author(s):  
IN MEI SOU ◽  
EDWIN A. COWEN ◽  
PHILIP L.-F. LIU

The velocity field and turbulence structure within the surf and swash zones forced by a laboratory-generated plunging breaking wave were investigated using a particle image velocimetry measurement technique. Two-dimensional velocity fields in the vertical plane from 200 consecutive monochromatic waves were measured at four cross-shore locations, shoreward of the breaker line. The phase-averaged mean flow fields indicate that a shear layer occurs when the uprush of the bore front interacts with the downwash flow. The turbulence characteristics were examined via spectral analysis. The larger-scale turbulence structure is closely associated with the breaking-wave- and the bore-generated turbulence in the surf zone; then, the large-scale turbulence energy cascades to smaller scales, as the turbulent kinetic energy (TKE) evolves from the outer surf zone to the swash zone. Smaller-scale energy injection during the latter stage of the downwash phase is associated with the bed-generated turbulence, yielding a −1 slope in the upper inertial range in the spatial spectra. Depth-integrated TKE budget components indicate that a local TKE equilibrium exists during the bore-front phases and the latter stage of the downwash phases in the outer surf zone. The TKE decay resembles the decay of grid turbulence during the latter stage of the uprush and the early stage of the downwash, as the production rate is small because of the absence of strong mean shear during this stage of the wave cycle as well as the relatively short time available for the growth of the bed boundary layer.


Sign in / Sign up

Export Citation Format

Share Document