A Diagnostic Analysis of Low-Impact Development Simulations with SWMM

Author(s):  
Lucie Worthen ◽  
Christa Kelleher ◽  
Cliff Ian Davidson
Author(s):  
Robert M. Roseen ◽  
Todd V. Janeski ◽  
Michael Simpson ◽  
James H. Houle ◽  
Jeff Gunderson ◽  
...  

2018 ◽  
Vol 4 (1) ◽  
pp. 32-38
Author(s):  
Bhimo Rizky Samudro ◽  
Yogi Pasca Pratama

This paper will describe the function of water resources to support business activities in Surakarta regency, Central Java province. Surakarta is a business city in Central Java province with small business enterprises and specific culture. This city has a famous river with the name is Bengawan Solo. Bengawan Solo is a River Flow Regional (RFR) to support business activities in Surakarta regency. Concious with the function, societies and local government in Surakarta must to manage the sustainability of River Flow Regional (RFR) Bengawan Solo. It is important to manage the sustainability of business activity in Surakarta regency.   According to the condition in Surakarta regency, this paper will explain how the simulation of Low Impact Development Model in Surakarta regency. Low Impact Development is a model that can manage and evaluate sustainability of water resources in River Flow Regional (RFR). Low Impact Development can analys goals, structures, and process water resources management. The system can also evaluate results and impacts of water resources management. From this study, we hope that Low Impact Development can manage water resources in River Flow Regional (RFR) Bengawan Solo.  


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
William C. Lucas

Retaining rainfall where it lands is a fundamental benefit of Low Impact Development (LID). The Delaware Urban Runoff Management Model (DURMM) was developed to address the benefits of LID design. DURMM explicitly addresses the benefits of impervious area disconnection as well as swale flow routing that responds to flow retardance changes. Biofiltration swales are an effective LID BMP for treating urban runoff. By adding check dams, the detention storage provided can also reduce peak rates. This presentation explores how the DURMM runoff reduction approach can be integrated with detention routing procedures to project runoff volume and peak flow reductions provided by BMP facilities. This approach has been applied to a 1,200 unit project on 360 hectares located in Delaware, USA. Over 5 km of biofiltration swales have been designed, many of which have stone check dams placed every 30 to 35 meters to provide detention storage. The engineering involved in the design of such facilities uses hydrologic modeling based upon TR-20 routines, as adapted by the DURMM model. The hydraulic approach includes routing of flows through the check dams. This presentation summarizes the hydrological network, presents the hydrologic responses, along with selected hydrographs to demonstrate the potential of design approach.


Sign in / Sign up

Export Citation Format

Share Document