A Saturated Seepage Flow Model for Low Impact Development Devices

Author(s):  
Yuan Cheng
2012 ◽  
Vol 446-449 ◽  
pp. 2699-2702
Author(s):  
Chang Chun Wu

Through project examples, this paper set up a two-dimensional finite element seepage flow model with the help of the Auto-BANK software, to solve the soakage line overflow points, seepage quantity and seepage gradient of the earth dam based on the basic equation of steady seepage flow of earth dam and definite conditions. It is found that this method can effectively calculate and analyse multi-media seepage flow field with complex boundaries.


2013 ◽  
Vol 166 ◽  
pp. 140-151 ◽  
Author(s):  
Pedro Navas ◽  
Susana López-Querol

2014 ◽  
Vol 700 ◽  
pp. 597-601
Author(s):  
Feng Jiu Zhang ◽  
Xu Xia Xiao ◽  
Shun Chu Li ◽  
Dong Dong Gui ◽  
Qiang Wang

The nonlinear spherical seepage flow model has been established for the composite reservoir model. The nonlinear spherical seepage flow model considers the well produce at a constant rate, and the quadratic gradient term under three outer boundary conditions (closed, constant pressure and infinite). Firstly, through variable substitutions, the seepage flow equation is linearized; then the model is transformed into the boundary value problem of an ordinary differential equation by employing the Laplace transform method. It has been confirmed that the Laplace space analytic solutions of such boundary value problems has a formula under different external boundaries, using the Similar Constructive Method(it is a simple and effective new idea for solving this class seepage flow model, complicated calculus calculation is avoided). The prospect of this new method is promising for understanding and studying the inherent laws of fluids flow.


2021 ◽  
Author(s):  
Huaxun Liu ◽  
Chunyan Jiao ◽  
Shusheng Gao ◽  
Liyou Ye ◽  
Weiguo An

Abstract Shale flow has microscale effects, and the flow is more complex. In this paper, the flow model and flow equation which can be used in the analysis of shale gas flow is established,which is based on the single nanotube model and combined with pore throat test results of the shale core by high-pressure mercury injection, and calculated the contributions of seepage, diffusion, transition flow and free molecular flow to shale gas flow. The contributions of seepage and diffusion were over 95%, and seepage and diffusion were the main flow patterns. Then, a coupled flow model and the coupled flow equation of shale gas with seepage and diffusion were established, which proposed a calculation method of shale permeability and diffusion by relationship between flow pressure and shale gas flow rate, and finally shale gas flow experiments were carried out and analyzed. The results show that the shale gas flow model and the flow equation established in this paper can describe shale gas flow very well. The shale gas flow rate is composed of seepage flow rate and diffusion flow rate, and the seepage flow rate is proportional to the pseudo pressure difference and is proportional to the pressure square difference at low pressure. The diffusion flow rate is proportional to the difference in shale gas density and is proportional to the pressure difference at low pressure. With shale gas reservoir pressure drops, the proportion of diffusion flow increases. The research results enrich the understanding of shale gas flow; they also have certain reference significance to the development of shale gas reservoirs.


2014 ◽  
Vol 670-671 ◽  
pp. 599-603 ◽  
Author(s):  
Xiao Xu Dong ◽  
Shun Chu Li ◽  
Dong Dong Gui ◽  
Feng Jiu Zhang

This paper studies the seepage flow mathematical model of three-area composite reservoir under three kinds of outer boundary conditions (infinite boundary, constant pressure boundary and closed boundary), in which influences of well-bore storage and skin factor are not taken into consideration. On the basic of theory of similar structure of solution of boundary value problem of differential equation, this paper obtain the solution of the seepage flow model of three-area composite reservoir. The study is not only conducive to further analyze the inherent law of the solution and solve corresponding application problems, but also easy to compile corresponding analysis software.


2013 ◽  
Vol 868 ◽  
pp. 633-637
Author(s):  
Li Feng Liu ◽  
Xin Wang

Because of the obvious non-Darcy characteristic of fluid flowing in tight reservoirs, there is a virtual moving boundary at the flow edge, and these percolation models of fractured wells with Darcy formula are no longer applicable. Based on the threshold pressure gradient effect, the unsteady seepage flow model of vertical fractured well was established in the drain area by means of Source and Green's Functions. With the flow characteristics at the boundary of tight reservoir, the motion equation of axes of moving boundary was obtained. By Example analysis, its proved that the moving boundary is approximate circular in the far-field, and it will move slower with the increase of the threshold pressure gradient.


Sign in / Sign up

Export Citation Format

Share Document