Enhancement of electrical activation of ion‐implanted phosphorus in Si(100) through two‐step thermal annealing

1993 ◽  
Vol 63 (8) ◽  
pp. 1125-1127 ◽  
Author(s):  
N. Yu ◽  
K. B. Ma ◽  
C. Kirschbaum ◽  
K. Varahramyan ◽  
W. K. Chu
1988 ◽  
Vol 126 ◽  
Author(s):  
N. Morris ◽  
B. J. Sealy

ABSTRACTRapid thermal annealing has been used to study the electrical activation mechanisms for magnesium and selenium implants in GaAs. By analysing the changes in electrical activity as a function of annealing time and temperature, a model has been developed which accurately predicts the electrical properties following the post-implant annealing stage. The model has been used to study the activation of other ions, particularly zinc, beryllium, tin and sulphur, the results of which will be compared with those of magnesium and selenium. The results suggest that the mechanism for electrical activation is dominated by the diffusion of gallium, arsenic or vacancies. The paper will present the model and discuss the activation mechanisms of the ions.


1983 ◽  
Vol 23 ◽  
Author(s):  
K.V. Vaidyanathan ◽  
H.L. Dunlap

ABSTRACTThis paper discusses the properties of high intensity lamp-annealed silicon or beryllium-implanted GaAs and InP samples. We find this annealing process can result in efficient activation of dopants. Conventional furnace annealing at the same temperature does not result in increased electrical activation of the dopants. High fluence silicon implants can be activated in anneal times as short as 2 seconds, while low fluence silicon implants require more extended annealing. Activation of low fluence implants in GaAs depends strongly on the properties of the bulk semiinsulating material.


1997 ◽  
Vol 469 ◽  
Author(s):  
K. Kyllesbech Larsen ◽  
P. A. Stoik ◽  
V. Privitera ◽  
J. G. M. van Berkum ◽  
W. B. de Boer ◽  
...  

ABSTRACTTransient enhanced diffusion (TED) and electrical activation (EA) of ion-implanted boron during rapid thermal annealing has been investigated using three types of boron doped p-type Si (100) substrates: (a) Cz 20 Ωcm, (b) 3 μm thick 20 Ωcm epitaxial Si layer (epi-layer) grown on a 20 Ωcm Cz substrate, and (c) 3 μm thick 20 Ωcm epi-layer grown on a 5 mΩcin Fz substrate. The level of oxygen is known to decrease from material type (a) to (c). The samples were implanted with 20 keV, 5×1013cm−2boron and subjected to rapid thermal annealing (RTA) at various temperatures and times. The EA and TED were studied using spreading resistance profiling (SRP) and secondary ion mass spectrometry (SIMS), respectively. Although the amount of TED is almost identical for the three substrates, the EA is found to be significantly higher in the epi-layers compared to Cz substrates. It is speculated that the trapping of vacancies by oxygen in the ion-damaged region leads to an increase in the interstitial supersaturation during annealing, which then results in enhanced boron clustering and reduced electrical activation in the peak of the implanted profile.


1983 ◽  
Vol 54 (5) ◽  
pp. 2413-2418 ◽  
Author(s):  
P. D. Scovell ◽  
E. J. Spurgin

1996 ◽  
Vol 69 (7) ◽  
pp. 996-998 ◽  
Author(s):  
Gong‐Ru Lin ◽  
Wen‐Chung Chen ◽  
Feruz Ganikhanov ◽  
C.‐S. Chang ◽  
Ci‐Ling Pan

Author(s):  
Jaime A. Freitas ◽  
Kenneth A. Jones ◽  
Michael A. Derenge ◽  
R.D. Vispute ◽  
Shiva S. Hullavarad

Sign in / Sign up

Export Citation Format

Share Document