Low‐cost, high‐performance array detector for spectroscopy based on a charge‐coupled photodiode

1994 ◽  
Vol 65 (5) ◽  
pp. 1782-1783 ◽  
Author(s):  
J. Bruce Johnson ◽  
Glenn Edwards ◽  
Marcus Mendenhall

2020 ◽  
Author(s):  
Joana P. Neto ◽  
Adriana Costa ◽  
Joana Vaz Pinto ◽  
André Marques–Smith ◽  
Júlio Costa ◽  
...  

AbstractThis work explored hybrid films of silver nanowires (AgNWs) with indium-doped zinc oxide (IZO) for developing high-performance and low-cost electrocorticography (ECoG) electrodes.The hybrid films achieved a sheet resistance of 6 Ω/sq while maintaining a transparency of ≈60% at 550 nm. Electrodes with 500 μm diameter were fabricated with these films and reached an impedance of 20 kΩ at 1 kHz and a charge storage capacity of 3.2 mC/cm2, a 2× and 320× improvement over IZO electrodes, respectively. Characterization of light-induced artifacts was performed showing that small light intensities (<14 mW/mm2) elicit electrical potential variation in the magnitude order of baseline noise. The validation of electrodes in vivo was achieved by recording electrical neural activity from the surface of rat cortex under anaesthesia. Moreover, the presence of the films did not cause obstruction of light during fluorescence microscopy.The presented film and electrode characterization studies highlighted the capabilities of this hybrid structure to fabricate transparent and flexible electrodes that are able to combine the superior temporal resolution of extracellular electrophysiology with the spatial resolution offered by optical imaging.



2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Esin Akgul Kalkan ◽  
Mehtap Sahiner ◽  
Dilek Ulker Cakir ◽  
Duygu Alpaslan ◽  
Selehattin Yilmaz

Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18column (15 cm×4.6 mm×3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis.



1995 ◽  
Author(s):  
John A. Neff ◽  
Charles Stirk




2020 ◽  
Vol 16 (3) ◽  
pp. 246-253
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Stefan Kruszewski

Background: Spectrophotometry and thin layer chromatography have been commonly applied in pharmaceutical analysis for many years due to low cost, simplicity and short time of execution. Moreover, the latest modifications including automation of those methods have made them very effective and easy to perform, therefore, the new UV- and derivative spectrophotometry as well as high performance thin layer chromatography UV-densitometric (HPTLC) methods for the routine estimation of amrinone and milrinone in pharmaceutical formulation have been developed and compared in this work since European Pharmacopoeia 9.0 has yet incorporated in an analytical monograph a method for quantification of those compounds. Methods: For the first method the best conditions for quantification were achieved by measuring the lengths between two extrema (peak-to-peak amplitudes) 252 and 277 nm in UV spectra of standard solutions of amrinone and a signal at 288 nm of the first derivative spectra of standard solutions of milrinone. The linearity between D252-277 signal and concentration of amironone and 1D288 signal of milrinone in the same range of 5.0-25.0 μg ml/ml in DMSO:methanol (1:3 v/v) solutions presents the square correlation coefficient (r2) of 0,9997 and 0.9991, respectively. The second method was founded on HPTLC on silica plates, 1,4-dioxane:hexane (100:1.5) as a mobile phase and densitometric scanning at 252 nm for amrinone and at 271 nm for milrinone. Results: The assays were linear over the concentration range of 0,25-5.0 μg per spot (r2=0,9959) and 0,25-10.0 μg per spot (r2=0,9970) for amrinone and milrinone, respectively. The mean recoveries percentage were 99.81 and 100,34 for amrinone as well as 99,58 and 99.46 for milrinone, obtained with spectrophotometry and HPTLC, respectively. Conclusion: The comparison between two elaborated methods leads to the conclusion that UV and derivative spectrophotometry is more precise and gives better recovery, and that is why it should be applied for routine estimation of amrinone and milrinone in bulk drug, pharmaceutical forms and for therapeutic monitoring of the drug.



2019 ◽  
Vol 15 (2) ◽  
pp. 130-137
Author(s):  
Hui Jiang ◽  
Lianhao Fu ◽  
Yu Wang ◽  
Shaozhi Wang ◽  
Xiaoxu Zhang ◽  
...  

Background: Jingzhiguanxin (JZGX) tablet, a traditional Chinese prescription, is commonly used for treating coronary heart disease and angina pectoris in the clinic. There are six active components (Danshensu (DSS), Protocatechuic aldehyde (PD), Paeoniflorin (PF), Ferulic acid (FA), Salvianolic acid B (Sal B) and Tanshinone IIA (TA)) in JZGX tablet. </P><P> Objective: In this paper, a simple and reliable method was used for simultaneous determining the six active components by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Methods: These six active components were separated on an Agilent Zorbax Eclipse XDB-C18 column (150 mmx4.6 mm, 5 µm) at 30 °C. Acetonitrile (A), methanol (B) and 0.5% H3PO4 aqueous solution (C) were used as mobile phase for gradient elution. The flow rate was 1 mL/min and the detection wavelengths were set at 280 nm for DSS, PD and Sal B, 230 nm for PF, 320 nm for FA and 270 nm for TA, respectively. Results: All of the six components showed good linearity regressions (r2≥0.9997) in the detected concentration range. The recovery rates and coefficient of variation (CV) for all analytes were 98.66%- 100.18% and 0.75%-1.89%, respectively. This method was successfully applied to simultaneously determine the six components in JZGX tablet from different batches and manufacturers. Conclusion: The validated method can be used in routine quality control analysis of JZGX tablet without any interference.



2019 ◽  
Vol 15 (6) ◽  
pp. 607-615 ◽  
Author(s):  
Shirley K. Selahle ◽  
Philiswa N. Nomngongo

Background and Objective: A rapid, simple and environmental friendly supramolecular solvent (SUPRAS) based liquid-liquid microextraction method for preconcentration of ciprofloxacin (CIPRO), danofloxacin (DANO) and enrofloxacin (ENRO) from wastewater was developed. Methods: This microextraction technique was coupled with high-performance liquid chromatography equipped with a diode array detector (HPLC-PDA) for detection and separation of the antibiotics. The SUPRAS composed of decanoic acid and tricaprylymethylammonium chloride. Optimum conditions for the extraction and preconcentration of all the antibiotics were obtained using surface response methodology (RSM) based on Box-Behnken design. Results: Under optimum conditions, the limits of detection (LOD) and limit of quantification (LOQ) ranged from 0.06-0.14 µg L−1 and 0.22-0.47 μg L−1, respectively with the preconcentration factors ranging from 153-241. The linear dynamic ranges were between LOQ and 850 µg L−1 with correlation coefficients ranging from 0.9928 to 0.9999. The intra-day (n = 15) and inter-day (n = 5) precisions (expressed in terms of %RSD) for 50 µg L−1 of CIPRO, DANO and ENRO were in the range of 3.3–4% and 4.1–5.8%, respectively. Conclusion: Lastly, the developed method was used for the extraction, preconcentration and quantification of selected CIPRO, DANO and ENRO in influent and effluent wastewater samples.



Author(s):  
Hyunseo Kang ◽  
Jong Jin Lee ◽  
Kwonseob Lim ◽  
Seihyoung Lee ◽  
Shinyoung Yoon ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document